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Abstract

Previous work on task scheduling mechanisms assumed
that the agent’s goal is to maximize its own profit without
considering the effect of its strategy on the other agents’
profit. This is not always the case, an agent may want to
cause loses to the other agents besides maximizing its profit.
Such an agent is said to be an antisocial agent. An antiso-
cial agent will try to gain as much profit as possible relative
to the other agents. In this paper we consider a mechanism
for task scheduling on related machines in which each ma-
chine is associated with an agent. We develop an antisocial
strategy which can be used by an antisocial agent to inflict
losses to the other participating agents. We analyze the ef-
fect of different degrees of agent’s antisociality on the losses
inflicted to the other agents.

1. Introduction

The current distributed computing systems such as com-
putational grids are composed of geographically distributed
resources (computers, storage etc.) owned by self interested
agents or organizations. These agents may manipulate the
load allocation protocol in their own benefit and their selfish
behavior may lead to severe performance degradation and
poor efficiency. Solving such problems involving selfish
agents is the object of mechanism design theory (also called
implementation theory) [14]. This theory helps design pro-
tocols in which the agents are always forced to tell the truth
and follow the rules. Such mechanisms are called truthful
or strategyproof. In a mechanism each participant has a pri-
vately known function called valuation which quantifies the
agent’s benefit or loss. Payments are designed and used to
motivate the participants to report their true valuations. The
goal of each participant is to maximize the difference of its
valuation and payment. An agent makes profit if the pay-
ment received by the agent is greater than its true valuation
and it suffers losses if the payment is less than its true val-
uation. As an example consider several resource providers

that offer computer services. We assume that each resource
is characterized by its job processing rate. An allocation
mechanism is strategyproof if a resource owner maximizes
her utility only by reporting the true resource processing
rate to the mechanism. The optimal utility is independent
of the values reported by the other participating resource
owners.

Previous work on task scheduling mechanisms assumed
that the agent’s goal is to maximize its own profit without
considering the effect of its strategy on the other agents’
profit [9, 13]. This is not always the case, an agent may
want to inflict loses to other agents rather than maximize its
own profit. Such an agent is said to be an antisocial agent.
An antisocial agent will try to gain as much profit as pos-
sible relative to the other agents. An antisocial agent needs
to determine a bidding strategy that will allow it to inflict
losses to the other participating agents while causing min-
imum losses to itself. Also given that the true value of an
agent is a private value, the antisocial agent needs a way
to infer the true values of the other agents such that it can
modify its bid accordingly.

In this paper we consider a mechanism for task schedul-
ing on related machines and develop an antisocial strat-
egy which can be used by an antisocial agent (associated
with one machine) to inflict losses to the other participating
agents. The strategy is proposed for a mechanism where the
tasks with different sizes are to be allocated by the mecha-
nism. We analyze the effect of different agent’s parameters
on the losses inflicted to the other agents.

Related work. Recently many researchers have used mech-
anism design theory to solve problems in areas like resource
allocation and task scheduling [12, 17, 18], congestion con-
trol and routing [5, 11]. Nisan and Ronen [13] studied dif-
ferent mechanisms for shortest path and task scheduling.
They proposed mechanisms to solve the shortest path prob-
lem and the problem of task scheduling on unrelated ma-
chines based on the popular VCG (Vickrey-Clarke-Groves)
mechanism [4, 10, 16]. VCG mechanisms can be applied
only to problems where the objective functions are simply
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the sum of agent’s valuations and the set of outputs is fi-
nite. A general framework for designing truthful mecha-
nisms for optimization problems where the agents’ private
data is one real valued parameter was proposed by Archer
and Tardos [1]. Their framework can be applied to design
mechanisms for optimization problems with general objec-
tive functions and restricted form of valuations. They also
studied the frugality of shortest path mechanisms in [2]. A
truthful mechanism that gives the overall optimal solution
for the static load balancing problem in distributed systems
is proposed in [9]. Feigenbaum et al. [6] studied the compu-
tational aspects of mechanisms for cost sharing in multicast
transmissions. A mechanism for low cost routing in net-
works is proposed in [5]. The results and the challenges
of designing distributed mechanisms are surveyed in [7].
Goldberg and Hartline [8] studied the problem of designing
mechanisms such that no coalition of agents can increase
the combined utility of the coalition by engaging in a col-
lusive strategy. The closest work to the present study is the
work of Brandt and Weiss [3] in which the authors studied
the behavior of antisocial agents in Vickrey auctions. They
considered repeated Vickrey auctions in which the same
item is auctioned in each round. They derived an antiso-
cial strategy and introduced some notations to formalize the
study of antisocial agents. Our paper considers a different
scenario where the tasks (items) are different but related in
terms of their execution times.

Our contributions. We consider a mechanism for schedul-
ing on related machines and develop an antisocial strategy
for the participating agents. We characterize the antisocial-
ity of an agent and analyze the effect of different degrees
of antisociality on the loss an agent can inflict to the other
agents. We simulate the strategy and verify the correctness
of the strategy. By means of simulation we also study the
effect of changing different parameters on the amount of
losses an antisocial agent can inflict on the other participat-
ing agents.

Organization. In Section 2 we present the formal model
of the task scheduling problem and the scheduling mecha-
nism. In Section 3 we present a formal characterization of
the antisocial behavior and then present the antisocial strat-
egy for the scheduling mechanism. In Section 4 we present
and discuss experimental results. Section 5 concludes the
paper.

2. The Scheduling Problem and Mechanisms

2.1 The Scheduling Problem

We consider here the problem of scheduling� � � inde-
pendent tasks ��� ��� � � � � �� on � � � agents (machines)

��� ��� � � � � ��. Each task �� is characterized by its pro-
cessing requirement of �� units of time. Each agent �� is
characterized by its processing speed �� � � and thus task
�� would take 	�� � ��
�� time to be processed by ��. A
schedule � is a partition of the set of tasks indices into dis-
joint sets ��, � � �� � � � � �. Partition �� contains the indices
corresponding to all the tasks allocated to ��. The goal is
to obtain a schedule � minimizing a given objective func-
tion such as makespan, sum of completion times, etc. In the
scheduling literature, this problem is known as scheduling
on related machines [15].

2.2 Scheduling Mechanisms

In this section we first describe the scheduling mech-
anism design problem and then present two scheduling
mechanisms.

Definition 2.1 (Mechanism design problem) The prob-
lem of designing a scheduling mechanism is characterized
by:

(i) A finite set � of allowed outputs. The output is a
schedule ���� � ������� ������ � � � � ������, ���� �
�, computed according to the agents’ bids, � � ����
��� � � � ����. Here, �� � ���� 

�
�� � � � � 

�
�� is the vector

of values (bids) reported by agent �� to the mecha-
nism.

(ii) Each agent ��, (� � �� � � � � �), has for each task
�� a privately known parameter 	�� (� � �� � � � ��)
called the true value which represents the time re-
quired by agent �� to execute task �� . The prefer-
ences of agent �� are given by a function called val-
uation �������� ��� �

�
������� 	

�
� (i.e. the total time

it takes to complete all tasks assigned to it). Here
�� � �	��� 	

�
�� � � � � 	

�
��.

(iii) Each agent goal is to maximize its utility. The utility of
agent �� is ����� �� � ����� ��� �������� ���, where
�� is the payment handed by the mechanism to agent
��.

(iv) The goal of the mechanism is to select a sched-
ule � that minimizes the make-span ���� �
����

�
������� 	

�
� .

An agent �� may report a value (bid) �� for a task ��
different from its true value 	�� . The true value character-
izes the actual processing capacity of agent ��. The goal
of a truthful scheduling mechanism is to give incentives to
agents such that it is beneficial for them to report their true
values. Now we give a formal description of a mechanism
and define the concept of truthful mechanism.
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Definition 2.2 (Mechanism) A mechanism is a pair of
functions:

(i) The allocation function: ���� � ������� ������
� � � � ������. This function has as input the vector of
agents’ bids � � ���� ��� � � � ���� and returns an out-
put � � �.

(ii) The payment function: � ��� �� � ������ ��� ����� ���
� � � � ����� ���, where ����� �� is the payment handed
by the mechanism to agent ��.

Definition 2.3 (Truthful mechanism) A mechanism is
called truthful or strategyproof if for every agent �� of type
�� and for every bids ��� � ���� � � � ����������� � � � ����
of the other agents, the agent’s utility is maximized when
it declares its real value �� (i.e. truth-telling is a dominant
strategy).

Nisan and Ronen [13] designed a truthful mechanism for
a more general problem called scheduling on unrelated ma-
chines. In this case the speed of machines depends on the
task i.e. for a task �� and agent ��, the processing speed is
��� . If ��� � �� for all � and � then the problem reduces to
the problem of scheduling on related machines [15]. The
authors provided an approximation mechanism called Min-
Work, minimizing the total amount of work. MinWork is a
truthful mechanism. In the following we present the Min-
Work mechanism.

Definition 2.4 (MinWork Mechanism) [13] The mecha-
nism that gives an approximate solution to the scheduling
problem is defined by the following two functions:

(i) The allocation function: each task is allocated to the
agent who is able to execute the task in a minimum
amount of time (Allocation is random when there are
more than one agent with minimum type).

(ii) The payment function for agent �� given by:

����� �� �
�

�������

���
�� ���

	�
�

� (1)

The MinWork mechanism can be viewed as running sep-
arate Vickrey auctions simultaneously for each task. In this
paper we consider a modification of MinWork mechanism
that solves the problem of scheduling on related machines.
This mechanism can be viewed as running a sequence of
separate Vickrey auctions, one for each task. Thus the main
difference from MinWork is that auctions are run in se-
quence and not simultaneously.

Definition 2.5 (Modified MinWork Mechanism) The
mechanism that gives an approximate solution to the prob-
lem of task scheduling on related machines is defined as
follows:

For each task �� (� � �� �� � � � �
):

(i) The allocation function: Task �� is allocated to the
agent who is able to execute it in a minimum amount
of time.

(ii) The payment function for agent �� given by:

����� �� � ���
�� ���

	�
�

� � � � ����� (2)

In the following we present the protocol that implements
the Modified MinWork mechanism (MMW).

Protocol MMW:

For each task �� , � � �� � � � �
:

1. Agent ��, � � �� � � � � � submits bid ��� to the
mechanism.

2. After the mechanism collects all the bids it does
the following:

2.1. Computes the allocation using the allocation
function.

2.2. Computes the payments �� for each agent
�� using the payment function.

2.3. Sends �� to each ��.

3. Each agent receives its payment and evaluates its
utility.

After receiving the payment each agent evaluates its utility
and decides on the bid values for the next task. This mech-
anism preserves the truthfulness property in each round.

3. The Antisocial Strategy

In this section we design an antisocial strategy for the
agents participating in the Modified MinWork mechanism.
First we present a formal characterization of agent’s antiso-
cial behavior and then present the proposed antisocial strat-
egy.

3.1 Background

The mechanism design approach considers the scenario
where self-interested agents participate in the mechanism
and there is sufficient motivation for the agents to report
their true values. This is the case of truthful mechanisms
in which an agent maximizes its utility by reporting its true
value. An agent might misreport its type in order to inflict
losses on the other agents. An agent experiences a relative
loss when its payment is reduced as compared to the pay-
ment it would have received when all agents have reported
their true valuations. An agent incurs an absolute loss when
the payment is less than its true valuation. We denote the
relative loss by � in the subsequent text. The loss men-
tioned in the subsequent text is the relative loss (�) unless
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mentioned otherwise. Since the actual amount of loss varies
depending on the size of the task, it is more meaningful to
represent the relative loss in percentage. The relative loss
(��) is calculated as follows:

�� �
� �
� � ��

��

� ��� (3)

Where � �
� is the payment received by the best agent ��

when all agents, including ��, report their true values; and
�� is the payment received by the best agent �� when one
of the agents is antisocial.

An agent might accept small losses in order to inflict
greater relative losses to the other agents, i.e. an agent will
try to maximize the difference between its utility and the
utility of the other agents. The MMW mechanism can also
be viewed as running a Vickrey auction for each task. Since
in the Vickrey auction the payment to the winner depends
on the bid of the second best agent for that auction, an anti-
social agent can reduce the profit of the winner (i.e. induce a
loss) by bidding values close to the winner’s bid (assuming
that the antisocial agent knows the bids of the winner). To
formalize the study of antisocial behavior in Vickrey auc-
tions Brandt and Weiss [3] introduced a parameter called the
derogation rate of an agent. The derogation rate �� � ��� ��
can be defined as the degree of antisocial behavior of an
agent ��, i.e. �� quantifies whether the agent gives prefer-
ence to maximizing its profit or to inflict losses to the other
agents. A regular agent has �� � � and a purely destructive
agent has �� � �. A balanced agent has �� � ��� i.e. it gives
equal weight to its utility and others’ losses. The payoff of
the agent depends on the derogation rate of the agent:

����� � � ��� ����� � ��
�

�� ���

��� (4)

Every agent tries to maximize its payoff. An antisocial
agent will adjust its bid in such a manner that it is able to
reduce the utility of the winner. To be able to adjust its bid
an antisocial agent has to infer the actual valuation (or bid)
of the winner. This is the idea that will be used to design the
proposed antisocial strategy for MMW. This work extends
the work in [3] which considered the antisocial behavior in
repeated Vickrey auctions. In the repeated Vickrey auctions
case the same item is auctioned in each round. In our case
we have different items (tasks) which are related in terms of
their execution times.

In the proposed antisocial strategy, the antisocial agent
bids according to its derogation rate and makes decisions
based on whether it was allocated the last task or not. The
strategy exploits the fact that the agents (machines) are re-
lated and so the valuation of the other agents is also pro-
portional to the task requirement (size). The agent starts by
bidding its true valuation and if it loses, it reduces its bid

step by step so that it can reach the bid of the best agent.
The amount by which the antisocial agent �� reduces its
bid in every step is characterized by the step down percent-
age, ��. When the antisocial agent’s bid is lower than the
bid of the best agent, the antisocial agent wins and receives
payment equal to the best agent’s true value. The antiso-
cial agent then decides its next bid such that it can inflict a
relative loss to the best agent, taking into consideration its
derogation rate and the bid of the best agent. Then the an-
tisocial agent keeps bidding with the same information for
the subsequent tasks inflicting losses to the best agent.

3.2 Antisocial Strategy

In describing the proposed antisocial strategy we use the
following notations:

�	
������ - boolean variable indicating whether ��

knows the price paid for a task in the last round (it
also indicates if �� won in the last round);

��	����	����� - boolean variable indicating if the
price received in the last round was greater than the
valuation;

���	�����
� - boolean variable to control execution, it
indicates if the bid is to be decreased;

�� = ��� - time required by antisocial agent�� to execute the
current task �� (for simplicity we denote ��� by �� since
the strategy is followed by agent ��);

���� = ����� - true value of agent �� for previous task ����

(
 is implicit in ����);

�� - payment received by agent �� in the last round (if it
won);

���� = ����� - bid placed by agent �� for the previous task,
which might be different from the current bid (
 is im-
plicit in ����);

� - a chosen small quantity;

�� - derogation rate of the antisocial agent ��;

�� - percentage decrease of antisocial agent ��’s bid;

The proposed antisocial strategy is presented in Figure 1.
An antisocial agent following this strategy can be assumed
to be in one of the six stages at a particular point in time.
An agent �� starts in Stage 0 where it bids its true valua-
tion. If the agent wins in Stage 0, which suggests that the
valuation of this agent is the lowest (and thus also comes to
know the valuation of the second best agent), it transitions
to Stage 1 and bids higher than its true valuation. The bid in
Stage 1 depends on the derogation rate of the agent as well
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as the bid of the second best agent. The antisocial agent
bids higher than its true valuation. The agent keeps bidding
according to Stage 1 while it wins. If it loses it moves to
Stage 2. Since the antisocial agent has lost, it does not re-
ceive the payment and so it does not have the knowledge

����������� 	
���;
���
�����
�� � 	
���;
�����
������ 	
���;
� � �;
Stage 0: �� � �� ;

�� bids �� ;
if (�� wins)

then �� � �����;
����������� ����;
���
�����
�� � ����;

else �����
������ ����;
do

� � � � �;
Stage 1: if (���������� and ���
�����
�� )

then �� � ���� � ��

�
��

����
� �� � ��

�
;

�� bids �� ;
if (�� loses)

then ����������� 	
���;
Stage 2: if (not ���������� and ���
�����
�� )

then �� � ���

��

�
��

����
�

�
���������

��
� ����

�
� ��

�
;

�� bids �� ;
if (�� wins)

then ����������� ����;
�� � �����;

else �����
������ ����;
����������� 	
���;

Stage 3: if (�������)

then �� � �� �

�
����
����

� ��

�
;

�� bids �� ;
if (�� wins)

then ����������� ����;
�� � �����;
���
�����
�� � 	
���;
�����
������ 	
���;

Stage 4: if (���������� and not ���
�����
�� )

then �� � �� � ��

�
�� � �� �

��
����

�
� �;

�� bids �� ;
if (�� wins)

then �� � �����;
else ����������� 	
���;

Stage 5: if (not ���������� and not ���
�����
�� )
then �� � �� ���

��

�
�� �

��
����

�

�
�����������

��
� ����

� �
;

�� bids �� ;
if (�� wins)

then �� � �����;
����������� ����;

else ����������� 	
���;
while(� � �);

Figure 1. The antisocial strategy

of the the winning agent’s bid. In Stage 2 it calculates the
bid of the second best agent using the information about the
second best agent’s valuation from previous bid, and then
bids according to that calculated value and its own deroga-
tion rate. If the agent wins in Stage 2, it returns to Stage
1 and bids according to the strategy of Stage 1. If it loses
in Stage 2, it goes to Stage 3. If the agent loses in Stage 0
then it also transitions to Stage 3. In Stage 3, the antisocial
agent reduces its bid by a small value anticipating to win
and thus gets information about the bid of the agent with
lower valuation. The agent remains in Stage 3 and keeps
lowering the bid by a small percentage until its own bid is
below the bid of the agent with the lowest valuation. When
the agent wins, it goes to Stage 4. Since now it knows the
valuation of the best agent, it bids lower than its own true
valuation (but higher than the valuation of the best agent) in
order to inflict loss on that agent. If the agent wins in Stage
4 and the payment it receives is less than its true valuation,
it remains in the same stage. This means that the antisocial
agent had bid less than the agent with the lowest valuation
and since now the antisocial agent comes to know the bid
of the best agent, it raises the bid (by bidding again accord-
ing to strategy in Stage 4). If the agent wins in Stage 4, but
the payment it receives is greater than its true valuation, it
goes to Stage 1 and bids according to the strategy of Stage
1 in subsequent bids. This means that the valuation of the
competing agent is greater than that of the antisocial agent
and so the antisocial agent bids according to the strategy
in Stage 1 thus bidding more than its true valuation. If the
agent loses in Stage 4, it moves to Stage 5. In Stage 5, the
agent calculates the bid of the agent with the lowest valua-
tion using the information from previous bid and then bids
accordingly. If the agent wins in Stage 5, it moves to Stage
4 or Stage 1 depending on whether the price it receives is
less than or greater than its own true valuation respectively.
If the agent looses in Stage 5, it remains in that stage where
it possibly inflicts losses on the agent with the lowest val-
uation. The actual loss to the winner agent depends on the
derogation rate of the antisocial agent and presence of an-
other agent with valuation in between that of the antisocial
agent and the winner.

4. Experimental results

To validate and analyze the proposed antisocial strategy,
we developed a discrete event simulator which facilitates
the simulation of the mechanism and the strategy. We sim-
ulated the antisocial strategy considering different values of
the parameters in order to examine their effect on the agent
losses. The simulation environment and the results are pre-
sented in this section. In the following we denote by �� the
position of an antisocial agent �� in the sequence of agents
sorted in decreasing order of their valuations. For example
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Table 1. Summary of parameter values used
in the simulation

Parameter Range/Value Parameters
kept con-
stant

Number of agents (�) 16 -
� 0.01% of task size -
Bid decrease (��) 5% -
True values (���) normal(0 . . . 2) -
Antisocial position (��) 1 . . . 16 �

�
�

Derogation rate (��) 0 . . . 1 �
�
� , ��

Task size (��) uniform(0 . . . 100) �
�
� , ��, ��

Number of tasks (�) 10000 �
�
� , ��, ��

�� � � means the agent with the lowest true value, �� � �

means agent with the second lowest true value and so on.

4.1 Simulation Environment

The simulation was run with different combinations of
parameters (presented in Table 1) to study their effect on
the agents’ losses. The parameters that were varied were the
true values of the agents, the antisocial agent and the dero-
gation rate. For a particular set of parameters, the mecha-
nism allocates the tasks considering a normal scenario (no
antisocial agent) and then considering the presence of one
antisocial agent. The difference in the outcomes is then
recorded and analyzed.

We simulated the strategy by considering a task schedul-
ing scenario with 16 agents. The value of � (a chosen in-
finitesimal quantity) was set to 0.01% of the task size (taken
relative to task size to remove scaling errors). Also the bid
percentage decrease �� was set to 5%. This parameter de-
cides how much to decrease the bid when an agent loses, in
order to become closer to the best agent’s bid. For each sim-
ulation experiment one set of true values of the agents were
generated according to the normal distribution. For a partic-
ular set of true values, the simulation was run for different
antisocial positions (i.e. making the agent with the lowest
true value as antisocial, then the second lowest as antisocial
and so on). For a particular set of true values and antisocial
position, the derogation rates for that antisocial agent were
varied. For a particular set of true values, antisocial position
and derogation rate the simulation was run for ��� tasks of
different sizes. The task sizes were generated according to
the uniform distribution. The allocation of tasks was done
according to MMW mechanism presented in Section 2.5.

For example, for a particular set of bids, the best agent
is made antisocial, the experiment will be run for deroga-
tion rates of this agent from 0 to 1 (increasing derogation
rate by 0.1 in each run). After that the second best agent
is made antisocial and the experiment is repeated for dero-

gation rates varying from 0 to 1 and so on. This way all
16 agents were made antisocial one by one and then the set
of bids is changed and the experiment repeated. For each
run the allocation, the payment made, the position of anti-
social agent and related data is recorded considering both
scenarios (no antisocial agent and one antisocial agent is
present). This data is used to calculate the percentage rel-
ative loss (��) the antisocial agent was able to inflict on
the best agent. For a particular set of true values, antisocial
position and derogation rate, maximum and average relative
loss (in %) is recorded. For a particular antisocial agent po-
sition, the maximum and average (over varying derogation
rate) of relative loss that agent is able to inflict is recorded.
For a particular set of bids also the maximum and average
percent relative loss is recorded.

4.2 Results

The following objectives were achieved by running the
simulation:

(i) Verify the correctness of the proposed antisocial strat-
egy.

(ii) Analyze the effect of derogation rate on the amount
of loss inflicted.

(iii) Analyze the effect of antisocial agent position on the
amount of loss inflicted.

(iv) Analyze the effect of true value on the amount of
loss inflicted.

Figure 2 shows the relative losses inflicted by an antiso-
cial agent for the first one hundred rounds that correspond
to the first one hundred allocated tasks. The agent starts
bidding from its true valuation and decreases its bid (thus
increasing the relative loss to the best agent) until it is al-
located the task and thus comes to know the valuation of
the best agent. According to the strategy, after this anti-
social agent reaches the stable phase (here after task 10 is
allocated) it keeps bidding according to its derogation rate,
inflicting losses to the best agent. This continues until all
tasks are finished. The maximum loss inflicted is about 47%
in this case.

In Figure 3 we present the maximum relative loss in-
flicted to the best agent in two cases in which agent at posi-
tion 2 and 4 are antisocial. It can be seen that if we consider
the second agent as antisocial, then by reducing its bid, it
is always able to inflict losses. The loss percent grows with
the derogation rate of the agent. If an agent other than the
second best agent is antisocial, it is able to inflict losses only
when its bid is less than the second best agent’s bid. So even
if the agent is able to infer the valuation of the best agent,
it is not able to always inflict losses. As can be seen from
the figure, the antisocial agent in position 4 (�� � �) is able
to inflict losses only after its derogation rate is 0.6. Before
that even if it is bidding less than its true valuation, it is not
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able to inflict any losses, since its bid is higher than the bid
of second best agent, which decides the payment to the best
agent. However all the agents inflict maximum losses when
their derogation rate is 1, i.e. they are purely destructive.

Considering Figure 4, it can be seen that the maximum
relative loss any agent can inflict on the best agent is equal
to the percentage difference between the valuations of the
best agent and the second best agent (in this case 54%).
Also the average loss an agent can inflict (with different
derogation rates) decreases as the position of antisocial
agent increases (i.e. the higher the antisocial agent position,
the lower the average loss). This is due to the fact that the
antisocial agent is able to inflict losses only when its dero-
gation rate is sufficiently high thus making the bid of the an-
tisocial agent less than the bid of the second best agent (but
greater than the best agent). The agents having a greater
difference between their true valuations and the valuation
of the best agent are able to inflict losses only when their
derogation rate is sufficiently high and thus the average loss
percentage is low.

5. Conclusion

As can be seen from the results presented in this paper,
the presence of an antisocial agent in the task scheduling
scenario can greatly affect the profit of the other agents.
This is due to the second price policy followed by the mech-
anism we consider. If an agent wants to inflict losses on
the other agents or wants to reduce its own losses due to
the presence of other antisocial agents, the antisocial strat-
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Figure 3. Maximum relative loss inflicted vs.
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2 and 4)
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Figure 4. Maximum and average relative loss
inflicted vs. antisocial agent number

egy presented in this paper should be applied. We analyzed
the effect of different parameters on the antisocial strategy.
In particular agents with high derogation rates inflict more
losses on the other agents. Also the amount of loss depends
on the difference in true values of the agent with the low-
est valuation, the agent with the second lowest valuation
and the antisocial agent (if different from above two). The
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amount of loss that can be inflicted also depends on the
number of agents having the true values lying in between
the true values of the best agent and the antisocial agent. In
future research we will consider the presence of more than
one antisocial agent and study its effect on agents’ utilities.
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