
A Scalable Asynchronous Replication-Based Strategy
for Fault Tolerant MPI Applications�

John Paul Walters and Vipin Chaudhary

Department of Computer Science and Engineering
University at Buffalo, The State University of New York

Buffalo, NY 14260, USA
{waltersj,vipin}@buffalo.edu

Abstract. As computational clusters increase in size, their mean-time-to-failure
reduces. Typically checkpointing is used to minimize the loss of computation.
Most checkpointing techniques, however, require a central storage for storing
checkpoints. This severely limits the scalability of checkpointing. We propose a
scalable replication-based MPI checkpointing facility that is based on LAM/MPI.
We extend the existing state of fault-tolerant MPI with asynchronous replication,
eliminating the need for central or network storage. We evaluate centralized stor-
age, SAN-based solutions, and a commercial parallel file system, and show that
they are not scalable, particularly beyond 64 CPUs. We demonstrate the low over-
head of our replication scheme with the NAS Parallel Benchmarks and the High
Performance LINPACK benchmark with tests up to 256 nodes while demonstrat-
ing that checkpointing and replication can be achieved with much lower overhead
than that provided by current techniques.

1 Introduction

Computational clusters with hundreds and thousands of processors are fast-becoming
ubiquitous in large-scale scientific computing. This is leading to lower mean-time-to-
failure and forces the system software to deal with the possibility of arbitrary and un-
expected node failure. Since MPI provides no mechanism to recover from a failure, a
single node failure will halt the execution of the entire MPI world. Thus, there exists
great interest in the research community for a truly fault-tolerant and transparent MPI
implementation.

Several groups have included checkpointing within various MPI implementations.
MVAPICH2 now includes support for kernel-level checkpointing of Infiniband MPI
processes [1]. Sankaran et al. also describe a kernel-level checkpointing strategy within
LAM/MPI [2,3]. However, these implementations suffer from a major drawback: a re-
liance on a common network file system or dedicated checkpoint servers.

We consider the reliance on network file systems, parallel file systems, and/or check-
point servers to be a fundamental limitation of existing fault-tolerant systems. Storing
checkpoints directly to network storage incurs too great an overhead. Using dedicated

� This research was supported in part by NSF IGERT grant 9987598, the Institute for Scientific
Computing at Wayne State University, MEDC/Michigan Life Science Corridor, and NYSTAR.

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 257–268, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

258 J.P. Walters and V. Chaudhary

checkpoint servers saturates the network links of a few machines, resulting in degraded
performance. Even parallel file systems are quickly saturated. As such, we make the
following contributions in this paper:

1. We propose and implement a checkpoint replication system that distributes the
overhead of checkpointing evenly over all nodes participating in the computation.
This significantly reduces the impact of heavy I/O on network storage.

2. We show that common existing strategies, including the use of dedicated check-
point servers, storage area networks (SANs), and parallel file systems, are inade-
quate for even moderately-sized computations.

The remainder of this paper is outlined as follows: in Section 2 we provide a brief
introduction to LAM/MPI and checkpointing. In Section 3we discuss existing LAM/MPI
checkpointing strategies. In Section 4 we compare existing checkpoint storage strategies
and evaluate our proposed replication technique. In Section 5we provide a brief overview
of the work related to this project. Finally, in Section 6 we present our conclusions.

2 Background

2.1 LAM/MPI

LAM/MPI [4] is a research implementation of the MPI-1.2 standard with portions of
the MPI-2 standard. LAM uses a layered software approach in its construction [5]. In
doing so, various modules are available to the programmer that tune LAM/MPI’s runtime
functionality including TCP, Infiniband, Myrinet, and shared memory communication.
The most commonly used module, however, is the TCP module which provides basic
TCP communication between LAM processes. A modification of this module, CRTCP,
provides a bookmark mechanism for checkpointing libraries to ensure that a message
channel is clear. LAM uses the CRTCP module for its built-in checkpointing capabilities.

2.2 Checkpointing Distributed Systems

Checkpointing itself can be performed at several levels. In kernel-level checkpoint-
ing, the checkpointer is implemented as a kernel module, making checkpointing fairly
straightforward. However, the checkpoint itself is heavily reliant on the operating sys-
tem (kernel version, process IDs, etc.). User-level checkpointing performs checkpoint-
ing using a checkpointing library, enabling a more portable checkpointing implementa-
tion at the cost of limited access to kernel-specific attributes (e.g. user-level checkpoint-
ers cannot restore process IDs). At the highest level is application-level checkpointing
where code is instrumented with checkpointing primitives. The advantage to this ap-
proach is that checkpoints can often be restored to arbitrary architectures. However,
application-level checkpointers require access to a user’s source code and do not sup-
port arbitrary checkpointing.

There are two major checkpointing/rollback recovery techniques: coordinated check-
pointing and message logging. Coordinated checkpointing requires that all processes
come to an agreement on a consistent state before a checkpoint is taken. Upon failure,

A Scalable Asynchronous Replication-Based Strategy 259

all processes are rolled back to the most recent checkpoint/consistent state. Message
logging requires distributed systems to keep track of interprocess messages in order to
bring a checkpoint up-to-date. Checkpoints can be taken in a non-coordinated manner,
but the overhead of logging the interprocess messages can limit its utility. Elnozahy et
al. provide a detailed survey of the various rollback recovery protocols that are in use
today [6].

3 LAM/MPI Checkpointing

We are not the first group to implement checkpointing within the LAM/MPI system.
Three others [7,3,8] have added basic checkpoint/restart support. Because of the previ-
ous work in LAM/MPI checkpointing, the basic checkpointing/restart building blocks
were already present within LAM’s source code. This provided an ideal environment
for testing our replication strategy. We begin with a brief overview of checkpointing
with LAM/MPI.

Sankaran et al. first added checkpointing support within the LAM system [3] by
implementing a lightweight coordinated blocking module to replace LAM’s existing
TCP module. The protocol begins when mpirun instructs each LAM daemon (lamd) to
checkpoint its MPI processes. When a checkpoint signal is delivered to an MPI process,
each process exchanges bookmark information with all other MPI processes. These
bookmarks contain the number of bytes sent to/received from every other MPI process.
With this information, any in-flight messages can be waited on and received before the
checkpoint occurs. After acquiescing the network channels, the MPI library is locked
and a checkpointing thread assumes control. The Berkeley Linux Checkpoint/Restart
library (BLCR) [9] is used as a kernel-level checkpointing engine. Each process check-
points itself using BLCR (including mpirun) and the computation resumes.

A problem with the above solution is that it requires identical restart topologies. If,
for example, a compute node fails, the system cannot restart by remapping checkpoints
to existing nodes. Instead, a new node would have to be inserted into the cluster to
force the restart topology into consistency with the original checkpoint topology. This
requires the existence of spare nodes that can be inserted into the MPI world to replace
failed nodes. If no spare nodes are available, the computation cannot be restarted.

Two previous groups have attempted to solve the problem of migrating LAM check-
point images. Cao et al. propose a migration scheme that parses the binary checkpoint
images, finds the MPI process location information, and updates the node IDs [10].
Wang, et al. propose a pause/migrate solution where spare nodes are used for migration
purposes when a LAM daemon discovers an unresponsive node [8]. Upon detecting
a failure, their system migrates the failed processes via a network file system to the
replacement nodes before continuing the computation.

We use the same coordinated blocking approach as Sankaran’s technique described
above. To perform the checkpointing, we use Victor Zandy’s Ckpt checkpointer [11].
Unlike previous solutions, we allow for arbitrary restart topologies without relying on
any shared storage or checkpoint parsing. Instead, we reinitialize the MPI library and
update node and process-specific attributes in order to restore a computation on varying
topologies. Due to space limitations and our focus on the replication portion of our

260 J.P. Walters and V. Chaudhary

implementation, we omit the details of the basic checkpoint/migrate/restart solution. A
more detailed description is available in our extended work [12].

4 Checkpoint Storage, Resilience, and Performance

In order to enhance the resiliency of checkpointing while simultaneously reducing its
overhead, we include data replication. While not typically stated explicitly, nearly all
checkpoint/restart methods rely on the existence of network storage that is accessible to
the entire cluster. Such strategies suffer from two major drawbacks in that they create a
single point of failure and also incur massive overhead when compared to checkpointing
to local disks.

A cluster that utilizes a network file system-based checkpoint/restart mechanism may
sit idle should the file system experience an outage. This leads not only to wasteful
downtime, but also may lead to lost data should the computation fail without the ability
to checkpoint. However, even with fault-tolerant network storage, simply writing large
amounts of data to such storage represents an unnecessary overhead to the application.
In the sections to follow, we examine two replication strategies: a dedicated server tech-
nique, and a distributed implementation.

We acknowledge that arguments can be made in support of the use of SANs or paral-
lel file systems for the storage of checkpoints. The most powerful supercomputers, such
as the IBM Bluegene/L, have no per-node local storage. Instead, parallel file systems
are used for persistent data storage in order to reduce the number of disk related node
failures. We do not position our implementation for use on such massive supercom-
puters. Instead, we target clusters consisting of hundreds or thousands of commodity
nodes, each with its own local storage.

For our implementation testing we used a Wayne State University owned cluster con-
sisting of 16 dual 2.66 GHz Pentium IV Xeon processors with 2.5 GB RAM, a 10,000
RPM Ultra SCSI hard disk and gigabit ethernet. A 1 TB IBM DS4400 SAN was also
used for the network storage tests. We evaluate both centralized-server and SAN-based
storage techniques and compare them against our proposed replication strategy using
the SP, LU, and BT benchmarks from the NAS Parallel Benchmarks (NPB) suite [13]
and the High Performance LINPACK (HPL) [14] benchmark.

To gauge the performance of our checkpointing library using the NPB tests, we
used exclusively “Class C” benchmarks. Our HPL benchmark tests used a problem
size of 28,000. These configurations resulted in checkpoints that were 106MB, 194MB,
500MB, and 797MB for the LU, SP, BT, and HPL benchmarks, respectively. The LU
and HPL benchmarks consisted of 8 CPUs each, while the BT and SP benchmarks
required 9 CPUs. We describe the scalability tests and configuration in Section 4.4.

In order to test the overhead of our implementation we chose to checkpoint the
benchmarks with much greater frequency than would otherwise be used. By check-
pointing at frequencies as short as 1 minute, we are better able to demonstrate the indi-
vidual components of the overhead. In a real application, users would likely checkpoint
an application at intervals of several hours (or more).

As a baseline, we compare the SAN storage, dedicated server storage, and replica-
tion storage techniques against the local disk checkpoint data shown in Figure 1. Here

A Scalable Asynchronous Replication-Based Strategy 261

we show the result of periodically checkpointing the NAS Parallel Benchmarks as well
as the HPL benchmark along with the time taken to perform a single checkpoint. Our
implementation shows very little overhead even when checkpointed at 1 minute inter-
vals. The major source of the overhead of our checkpointing scheme lies in the time
taken in writing the checkpoint images to the local file system.

In Figure 1(a) we break the checkpointing overhead down by coordination time,
checkpointing time, and continue time. The percentages listed above each column in-
dicate the overhead of a checkpoint when compared to the baseline running time of
Figure 1(b). The coordination phase includes the time needed to acquiesce the network
channels/exchange bookmarks (see Section 3). The checkpoint time consists of the time
needed to checkpoint the entire memory footprint of a single process and write it to sta-
ble storage. Finally, the continue phase includes the time needed to synchronize the
resumption of computation. The coordination and continue phases require barriers to
ensure application synchronization, while each process performs the checkpoint phase
independently.

As confirmed in Figure 1(a), the time required to checkpoint the entire system is
largely dependent on the time needed to checkpoint the individual nodes. Writing the
checkpoint file to disk represents the single largest time in the entire checkpoint process
and dwarfs the coordination phase. Thus, as the memory footprint of an application
grows, so too does the time needed to checkpoint. This can also impact the time needed
to perform the continue barrier as faster nodes are forced to wait for slower nodes to
write their checkpoints to disk.

4.1 Dedicated Checkpoint Servers Versus Checkpointing to Network Storage

The two most common checkpoint storage techniques presented in the literature are
the dedicated server(s) [15] and storing checkpoints directly to network storage [2,1].

(a) % indicates the contribution of check-
pointing (in terms of overhead) at 8 minute
intervals over the base timings without
checkpointing (from Figure 1(b)).

(b) Multiple checkpointing intervals.

Fig. 1. A breakdown of overheads when checkpointing to local disks

262 J.P. Walters and V. Chaudhary

We begin our evaluation with a comparison of these two common strategies. To do so,
we implemented both a dedicated checkpoint server solution as well as a SAN-based
checkpoint storage solution by extending the LAM daemons and mpirun to collect and
propagate checkpoints.

(a) Checkpointing to SAN-based storage. (b) Checkpointing to a central server.

Fig. 2. Runtime of NPB with checkpoints streamed to central checkpoint server vs. saving to
SAN

In Figure 2 we show the results of checkpointing the NAS Parallel Benchmarks with
the added cost of streaming the checkpoints to a centralized server or storing the check-
points to a SAN. In the case of the LU benchmark, we notice a marked reduction in
overhead when comparing the SAN data in Figure 2(a) to the checkpoint server data
presented in Figure 2(b). Indeed, the overhead incurred by streaming an LU checkpoint
every 4 minutes is less than 6% – a dramatic improvement over saving checkpoints to
shared storage, which results in an overhead of nearly 14% for LU and 25% for SP. The
situation is even worse for the BT benchmark which incurs an overhead of 134% at 4
minute checkpointing intervals.

However, we can also see that as the size of the checkpoint increases, so too does
the overhead incurred by streaming all checkpoints to a centralized server. At 8 minute
checkpointing intervals the SP benchmark incurs an overhead of approximately 4%
while the overhead of BT is nearly 16%. The increase in overhead is due to individual
lamds overwhelming the checkpoint server, thereby creating too much network and disk
congestion for a centralized approach to handle.

Nevertheless, the use of a dedicated checkpoint server shows a distinct cost-advantage
over the SAN-based solution despite suffering from being a single point of failure as well
as being network bottlenecks. Techniques using multiple checkpoint servers have been
proposed to mitigate such bottlenecks [15]. However, their efficacy in the presence of
large checkpoint files has not been demonstrated in the literature (NPB class B results
are shown).

Wang et al. propose a technique to alleviate the impact of checkpointing directly
to SANs [8]. Their technique combines local checkpointing with asynchronous check-
point propagation to network storage. However, their solution requires multiple levels

A Scalable Asynchronous Replication-Based Strategy 263

of scheduling in order to prevent the SAN from being overwhelmed by the network
traffic. The overhead of their scheduling has not yet been demonstrated in the literature,
nor has the scalability of their approach, where their tests are limited to 16 nodes.

4.2 Checkpoint Replication

To address the scalability issues shown in Section 4.1, we implemented an asynchronous
replication strategy that amortizes the cost of checkpoint storage over all nodes within
the MPI world. Again we extended LAM’s lamds, this time using a peer-to-peer strat-
egy to replicate checkpoints to multiple nodes. This addresses both the resiliency of
checkpoints to node failure as well as the bottlenecks incurred by transferring data to
dedicated servers.

A variety of replication strategies have been used in peer-to-peer systems. Typically,
such strategies must take into account the relative popularity of individual files within
the network in order to ascertain the optimal replication strategy. Common techniques
include the square-root, proportional, and uniform distributions [16]. While the uniform
distribution is not used within peer-to-peer networks because it does not account for a
file’s query probability, our checkpoint/restart system relies on the availability of each
checkpoint within the network. Thus, each checkpoint object has an equal query proba-
bility/popularity and we feel that a uniform distribution is justified for this specific case.

We opted to distribute the checkpoints randomly in order to provide a higher re-
silience to network failures. For example, a solution that replicates to a node’s nearest
neighbors would likely fail in the presence of a switch failure. Also, nodes may not
fail independently and instead cause the failure of additional nodes within their vicin-
ity. Thus, we feel that randomly replicating the checkpoints throughout the network
provides the greatest possible survivability.

Figure 3(a) shows the results of distributing a single replica throughout the cluster
with NPB. As can be seen, the overhead in Figure 3(a) is substantially lower than that of
the centralized server shown in Figure 2(b). In each of the three NAS benchmarks, we

(a) Periodic NPB checkpointing
with a single replica.

(b) Periodic HPL checkpointing
with a single replica.

Fig. 3. Benchmark timings with one replica

264 J.P. Walters and V. Chaudhary

are able to reduce the overhead of distributing a checkpoint by at least 50% when com-
pared to streaming all checkpoints to a single server. For the most expensive checkpoint
(BT), we are able to reduce the overhead of checkpointing to 9% at 4 minute intervals
and 5.5% at 8 minute intervals (compared to 38% and 16% at 4 minute and 8 minute
intervals, respectively).

In Figure 3(b) we show the results of distributing a single replica every 4, 8, 16, and
32 minutes for the HPL benchmark. We found that our network was unable to handle
checkpoint distribution of HPL at intervals shorter than 4 minutes, due to the size of the
checkpoint files. We notice a steady decrease in overhead as the checkpoint interval in-
creases to typical values, with a single checkpoint resulting in an overhead of only 2.2%.

4.3 The Degree of Replication

While the replication strategy that we have described has clear advantages in terms
of reducing the overhead on a running application, an important question that remains
is the number of replicas necessary to achieve a high probability of restart. To help
answer this question, we developed a simulator capable of replicating node failures,
given inputs of the network size and the number of replicas.

Table 1. Maximum number of allowed failures with 90, 99, and 99.9% restart probability

1 Replica 2 Replicas 3 Replicas 4 Replicas
Allowed Failures for Allowed Failures for Allowed Failures for Allowed Failures for

Nodes 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9%

8 1 1 1 2 2 2 3 3 3 4 4 4
16 1 1 1 2 2 2 5 4 3 7 5 4
32 2 1 1 5 3 2 8 5 4 11 8 6
64 3 1 1 8 4 2 14 8 4 19 12 8
128 4 1 1 12 6 3 22 13 8 32 21 14
256 5 2 1 19 9 5 37 21 13 55 35 23
512 7 2 1 31 14 7 62 35 20 95 60 38
1024 10 3 1 48 22 11 104 58 33 165 103 67
2048 15 5 2 76 35 17 174 97 55 285 178 111

From Table 1 we can see that our replication strategy enables a high probability
of restart with seemingly few replicas needed in the system. Further, our replication
technique scales quite well with the number of CPUs. With 2048 processors, for exam-
ple, we estimate that 111 simultaneous failures could occur while maintaining at least a
99.9% probability of successful restart and requiring only 4 replicas of each checkpoint.

4.4 Scalability Studies

To evaluate for scalability we tested our implementation with up to 256 nodes on a
University at Buffalo Center for Computation Research owned cluster consisting of
1600 3.0/3.2 GHz Intel Xeon processors, with 2 processors per node (800 total nodes),
a 30 TB EMC SAN as well as a high performance Ibrix parallel file system. The network

A Scalable Asynchronous Replication-Based Strategy 265

is connected by both gigabit ethernet and Myrinet. Gigabit ethernet was used for our
tests. 21 active Ibrix segment servers are in use and connect to the existing EMC SAN.

Because our checkpointing engine, Ckpt [11], is only 32 bit while the University at
Buffalo’s Xeon processors are each 64 bit, we simulated the mechanics of checkpoint-
ing with an artificial 1 GB file that is created and written to local disk at each checkpoint
interval. Aside from this slight modification, the remaining portions of our checkpoint-
ing system remain intact (coordination, continue, file writing, and replication).

In Figure 4 we demonstrate the impact of our checkpointing scheme. Each number of
nodes (64, 128, and 256) operates on a unique data set to maintain a run time of approx-
imately 1000 seconds. For comparison, we also present the overhead of checkpointing
to the EMC SAN and Ibrix parallel file system in Figure 4(d). We chose to evaluate
our system for up to 4 checkpoints as the results of our failure simulation (see Table 1)
suggest that 4 replicas achieves an excellent restart probability with high node failures.

The individual figures in Figure 4 all represent the total run time of the HPL bench-
mark at each cluster size. Thus, comparing the run times at each replication level against

(a) HPL with one replica per checkpoint. (b) HPL with two replicas per checkpoint.

(c) HPL with three replicas per checkpoint. (d) HPL with four replicas per checkpoint
compared with EMC SAN and Ibrix PFS.

Fig. 4. Scalability tests using the HPL benchmark

266 J.P. Walters and V. Chaudhary

the base run time without checkpointing provides a measure of the overhead involved at
each replication level. From Figure 4(a) we can see that the replication overhead is quite
low - only approximately 6% for 256 nodes or 3% for 64 nodes (at 16 minute check-
point intervals). Similar results can be seen at 2, and 3 replicas with only a minimal
increase in overhead for each replication increase.

The most important results, however, are those shown in Figure 4(d). Here we in-
clude the overhead data with 4 replicas (labeled “16 min” in Figure 4(d)) as well as with
checkpointing directly to the SAN (a common strategy in nearly all MPI checkpointing
literature) and the Ibrix parallel file system. In every case, checkpoints are taken at 16
minute intervals. As can be seen, the overhead of checkpointing directly to a SAN not
only dwarfs that of our distributed replication strategy but also nullifies the efficacy of
additional processors for large clusters. The Ibrix file system, while scaling much better
than the EMC SAN, is quickly overwhelmed as the ratio of compute nodes to segment
servers increases. Indeed, the overhead of saving checkpoints to the Ibrix parallel file
systems for cluster sizes of 128 and 256 nodes is 37.5% and 55% respectively, while
our replication strategy results in overheads of only 15.4% and 18.7%.

5 Related Work

Other MPI implementations aside from LAM/MPI have been extended with check-
pointing support. MPICH-GM, a Myrinet specific implementation of MPICH has been
extended to support user-level checkpointing [17]. Similarly, Gao et al. [1] demonstrate
a kernel-level checkpointing scheme for Infiniband (MVAPICH2) that is based on the
BLCR kernel module [9]. DejaVu [18] implements an incremental checkpoint/migra-
tion scheme that is able to incrementally capture the differences between two check-
points to minimize the size of an individual checkpoint.

Coti, et al. implemented a blocking coordinated protocol within MPICH2 [15]. Their
observations suggested that for high speed computational clusters blocking approaches
achieve the best performance (compared to non-blocking/message-logging approaches)
for sensible checkpoint frequencies. Our scalability results from Section 4.4 lend addi-
tional evidence supporting their claim.

Using Charm++ and Adaptive-MPI, Chakravorty et al. add fault tolerance via task
migration to the Adaptive-MPI system [19,20]. Zheng, et al. discuss a minimal replica-
tion strategy within Charm++ to save each checkpoint to two “buddy” processors [21].
Their work, however, is limited in that it only provides a minimal amount of resiliency
and is vulnerable to multiple node failures.

Other strategies such as application-level checkpointing have also been extended to
MPI checkpointing, particularly the C3 [22] system. Application-level checkpointing
carries advantages over kernel-level or user-level in that it is more portable and of-
ten allows for restart on varying architectures. However they do not allow for periodic
checkpointing and require access to a user’s source code.

Our work differs from the above in that we handle checkpoint redundancy for added
resiliency in the presence of node failures. Our checkpointing solution does not rely
on the existence of network storage for checkpointing. The absence of network storage
allows for improved scalability and also reduced checkpoint intervals (where desired).

A Scalable Asynchronous Replication-Based Strategy 267

6 Conclusions

We have shown that it is possible to effectively checkpoint MPI applications using the
LAM/MPI implementation with low overhead. Previous checkpointing implementa-
tions have typically neglected the issue of checkpoint replication. We comprehensively
addressed this issue with a comparison against all major storage techniques, includ-
ing commercial SAN strategies and a commercial parallel file system. Our replication
implementation has proven to be highly effective and resilient to node failures.

Further, we showed that our replication strategy is highly scalable. Where previous
work discussed within the literature typically tests scalability up to 16 nodes, we have
demonstrated low overhead up to 256 nodes with more realistic checkpoint image sizes
of 1 GB per node. Our work enables more effective use of resources without any re-
liance on network storage. We hope to continue this work with a greater interest in
applying our replication strategies toward fault-tolerant HPC. By combining our check-
point/restart and migration system with a fully fault-tolerant MPI, even greater resource
utilization would be possible while still maintaining user-transparency.

References

1. Gao, Q., Yu, W., Huang, W., Panda, D.K.: Application-Transparent Checkpoint/Restart for
MPI Programs over InfiniBand. In: ICPP 2006. Proceedings of the 35th International Con-
ference on Parallel Processing, Columbus, OH (2006)

2. Sankaran, S., Squyres, J.M., Barrett, B., Lumsdaine, A., Duell, J., Hargrove, P., Roman,
E.: The LAM/MPI Checkpoint/Restart Framework: System-Initiated Checkpointing. In: Pro-
ceedings, LACSI Symposium, Sante Fe, New Mexico, USA (2003)

3. Sankaran, S., Squyres, J.M., Barrett, B., Lumsdaine, A., Duell, J., Hargrove, P., Roman,
E.: The LAM/MPI Checkpoint/Restart Framework: System-Initiated Checkpointing. Inter-
national Journal of High Performance Computing Applications 19(4), 479–493 (2005)

4. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Environment for MPI. In: Proceed-
ings of Supercomputing Symposium, pp. 379–386 (1994)

5. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Dongarra, J.J.,
Laforenza, D., Orlando, S. (eds.) Recent Advances in Parallel Virtual Machine and Message
Passing Interface. LNCS, vol. 2840, pp. 379–387. Springer, Heidelberg (2003)

6. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Comput. Surv. 34(3), 375–408 (2002)

7. Zhang, Y., Wong, D., Zheng, W.: User-Level Checkpoint and Recovery for LAM/MPI.
SIGOPS Oper. Syst. Rev. 39(3), 72–81 (2005)

8. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: A Job Pause Service under
LAM/MPI+BLCR for Transparent Fault Tolerance. In: IPDPS 2007. Proceedings of 21st

IEEE International Parallel and Distributed Processing Symposium, Long Beach, CA, USA
(2007), Long Beach, CA, USA (2007)

9. Duell, J.: The Design and Implementation of Berkeley Lab’s Linux Checkpoint/Restart
(2003),
http://old-www.nersc.gov/research/FTG/checkpoint/reports.html

10. Cao, J., Li, Y., Guo, M.: Process Migration for MPI Applications based on Coordinated
Checkpoint. In: ICPADS 2005. Proceedings of the 11th International Conference on Parallel
and Distributed Systems, pp. 306–312. IEEE Computer Society Press, Los Alamitos (2005)

http://old-www.nersc.gov/research/FTG/ checkpoint/reports.html

268 J.P. Walters and V. Chaudhary

11. Zandy, V.: Ckpt: User-Level Checkpointing (2005),
http://www.cs.wisc.edu/∼zandy/ckpt/

12. Walters, J., Chaudhary, V.: A Comprehensive User-level Checkpointing Strategy for MPI
Applications. Technical Report 2007-1, University at Buffalo, The State University of New
York, Buffalo, NY (2007)

13. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Freder-
ickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V., Weeratunga, S.: The
NAS Parallel Benchmarks. International Journal of High Performance Computing Applica-
tions 5(3), 63–73 (1991)

14. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK Benchmark: Past, Present, and Fu-
ture. Concurrency and Computation: Practice and Experience 15, 1–18 (2003)

15. Coti, C., Herault, T., Lemarinier, P., Pilard, L., Rezmerita, A., Rodriguez, E., Cappello, F.:
MPI Tools and Performance Studies—Blocking vs. Non-Blocking Coordinated Checkpoint-
ing for Large-Scale Fault Tolerant MPI. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, Springer, Heidelberg (2006)

16. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-
to-Peer Networks. In: ICS 2002. Proceedings of the 16th international conference on Super-
computing, pp. 84–95. ACM Press, New York (2002)

17. Jung, H., Shin, D., Han, H., Kim, J.W., Yeom, H.Y., Lee, J.: Design and Implementation of
Multiple Fault-Tolerant MPI over Myrinet (M3). In: Gschwind, T., Aßmann, U., Nierstrasz,
O. (eds.) SC 2005. LNCS, vol. 3628, p. 32. Springer, Heidelberg (2005)

18. Ruscio, J., Heffner, M., Varadarajan, S.: DejaVu: Transparent User-Level Checkpointing,
Migration, and Recovery for Distributed Systems. In: Proceedings of the 21st IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS) 2007, Long Beach, CA,
USA (2007)

19. Chakravorty, S., Mendes, C., Kalé, L.V.: Proactive Fault Tolerance in MPI Applications via
Task Migration. In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006.
LNCS, vol. 4297, Springer, Heidelberg (2006)

20. Chakravorty, S., Kalé, L.: A Fault Tolerance Protocol with Fast Fault Recovery. In: Proceed-
ings of 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS)
2007, Long Beach, CA (2007)

21. Zheng, G., Shi, L., Kalé, L.V.: FTC-Charm++: An In-Memory Checkpoint-Based Fault Tol-
erant Runtime for Charm++ and MPI. In: CLUSTER, pp. 93–103 (2004)

22. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Collective Operations in
Application-Level Fault-Tolerant MPI. In: ICS 2003. Proceedings of the 17th annual inter-
national conference on Supercomputing, pp. 234–243. ACM Press, New York (2003)

http://www.cs.wisc.edu/~zandy/ckpt/

	A Scalable Asynchronous Replication-Based Strategy for Fault Tolerant MPI Applications
	Introduction
	Background
	LAM/MPI
	Checkpointing Distributed Systems

	LAM/MPI Checkpointing
	Checkpoint Storage, Resilience, and Performance
	Dedicated Checkpoint Servers Versus Checkpointing to Network Storage
	Checkpoint Replication
	The Degree of Replication
	Scalability Studies

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

