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Abstract— A Computer-aided diagnosis (CAD) system aims
to facilitate characterization and quantification of abnormalities
as well as minimize interpretation errors caused by tedious tasks
of image screening and radiologic diagnosis. The system usually
consists of segmentation, feature extraction and diagnosis, and
segmentation significantly affects the diagnostic performance.
In this paper, we propose an automatic segmentation method
that extracts the spinal cord and the dural sac from T2-
weighted sagittal magnetic resonance (MR) images of lumbar
spine without the need of any human intervention. Our method
utilizes a gradient vector flow (GVF) field to find the candidate
blobs and performs a connected component analysis for the
final segmentation. MR Images from fifty two subjects were
employed for our experiments and the segmentation results
were quantitatively compared against reference segmentation
by two medical specialists in terms of a mutual overlap metric.
The experimental results showed that, on average, our method
achieved a similarity index of 0.7 with a standard deviation of
0.0571 that indicated a substantial agreement. We plan to apply
this segmentation method to computer-aided diagnosis of many
lumbar-related pathologies.

I. INTRODUCTION

Computer-aided diagnosis (CAD) aims at assisting med-
ical doctors in their diagnostic decision-making processes.
Even though the final diagnosis should be made by the
doctor, a CAD system has been widely utilized based on
a variety of modalities such as X-ray, ultrasound, computed
tomography (CT), and magnetic resonance imaging (MRI),
assisting physicians in their early detection of various ab-
normalities such as breast cancers, lung nodules, vertebral
fractures, and intracranial aneurysms [1]. A CAD system
consisting of segmentation, feature extraction and diagnosis,
usually aims to facilitate characterization and quantification
of abnormalities as well as minimize interpretation errors
caused by tedious tasks of image screening and radiologic
diagnosis. The interpretation is affected by the skills and the
experience of the radiologist as well. Thus, by providing the
radiologist with a second opinion by a computer, the time
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needed for accurate diagnosis can be reduced and interpre-
tation can be enhanced minimizing errors. Accordingly, as
imaging technology and computation capability advance, it is
expected that CAD systems will be incorporated into Picture
Archiving and Communication Systems and be used daily
for diagnostic examinations in many clinical settings [1].

The spinal cord is a crucial communication channel be-
tween brain and body that constitutes the central nervous
system (CNS). This cylindrical structure of nervous tissues
is clinically important since it can develop several diseases
including tumors and inflammations that may result in
paralysis. It is known that the following common diseases
related to the spinal cord are captured in MRI: tumors,
infections, syringohydromyelia, spinal cord trauma, vascular
malfunction, inflammatory and degenerative diseases [2] [3].
In a lateral view, the spinal cord reaches around the level L2
and the dural sac shielding the spinal cord terminates around
the level S2. In MR images, the spinal cord may be used
as a landmark region that helps locate a region of interest
(ROI) and locate neighboring vertebra and intervertebral
discs because of its high brightness as well as relatively
homogeneous texture patterns.

Since ROI segmentation is a preprocessing step to feature
extraction and computational diagnosis in the CAD system,
in this paper we propose an automatic GVF field-based
segmentation method that extracts the spinal cord and the
dural sac in T2-weighted sagittal MR images of lumbar
spine. In our experiments, MR images obtained by T2-
weighted sagittal protocol are chosen since they are typically
viewed in clinical environments for a primary examination.
Experimental results on the 52 subjects are compared against
reference segmentation by two medical specialists and vali-
dated through a supervised evaluation.

A. Related Work

It is reported that many research groups have focused
on segmentation of the spinal cord and the spinal canal in
CT. Karangelis and Zimeras [4] introduced a semi-automatic
three-dimensional method for segmenting the spinal cord
from CT images. On each slice level, they used a bound-
ary tracking method along with linear interpolation in the
z−direction. However, the proper selection of the location
of the seed point and the threshold limited its applicability.
Archip et al. [5] presented a top-down knowledge-based
technique that identified the spinal cord in CT images. This
approach used an anatomical structures map (ASM) and a



task-oriented architecture plan solver. The authors argued
that the method was flexible enough to handle inter-patient
variation and transparent to the radiologist ensuring that the
experts can take control of undesirable results by image
analysis. However, it required a high computational cost and
sometimes the user needed to manually correct the errors.
Burnett et al. [6] developed a semi-automatic algorithm for
spinal canal segmentation of CT images. The spinal canal
was partially delineated by wavelet-based edge detection and
fitted to a deformable model. Later, the template was aligned
manually to fit more accurately to the spinal canal. The
performance of the algorithm was assessed by comparison
with contours generated manually by radiation oncologists.
Nyúl et al. [7] proposed a semi-automatic segmentation
method that extracted the spinal cord/canal from CT images.
An initial seed point set by a human allowed to perform
region-growing and active contour techniques automatically.
This method was validated by comparison with standard
reference.

In addition, many MRI-based approaches have been re-
ported recently. Nieniewski and Seneels [8] proposed a
morphological method to segment the spinal cord from MR
images. After correcting the image by the white top hat
transform with a large structuring element, the gray matter
was extracted in a semi-automatic way. The method was
tested on images from cross-sections of the spinal cord. In
this method, a user was required to provide the first region for
it to determine subsequent regions. Coulon et al. [9] proposed
a semi-automatic method for segmenting and visualizing
the surface of the spinal cord from the MRI based on the
optimization of a B-spline active surface model. The method
was applied to atrophy detection via measuring the cross-
sectional area along the cord. Schmit and Cole [10] proposed
a semi-automatic method for segmentation of the spinal cord
and injury diagnosis. Based on initial seed points that were
provided manually on each data set, a three-dimensional
seeded region growing technique was used. By comparing
the neurologically and spinal cord injured subjects in terms
of MRI segmented areas, they localized the problematic area
and assessed the injury level. Uitert et al. [11] presented
a semi-automatic process for segmenting the spinal cord
from MRI and for determining the total length and the area
between adjacent pairs of intervertebral discs. After seed
points were given along the center of the spinal cord, the cen-
terline of the spinal cord was determined. Then, a smoothed
centerline by a Gaussian filter was used to partition the spinal
cord region. McIntosh and Hamarneh [12] presented a semi-
automatic spinal cord segmentation and analysis technique
from MRI using high-level, autonomically-driven control
mechanisms. In their method, segmentation was done based
on geometrical, physical, sensory, cognitive, and behavioral
layers. The model was quantitatively validated and com-
pared against a manual segmentation method that used the
connected components and ITK-SNAP’s level-set method.
However, this method took 10 minutes per image on average
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Fig. 1. Input image and intermeidate results. (a) shows the input sagittal
image, (b) shows the GVF edge map, (c) represents its magnitude, and (d)
is the final segmented result.

and required two seed points by a user. Horsfield et al.
[13] proposed a semi-automatic method for segmentation
of the spinal cord from MRI. The model utilized an active
surface model that was formed from the approximated cord
centerline marked by a human and was applied to assessing
the multiple sclerosis. The method was evaluated in terms of
the intra-observer reproducibilities.

The methods presented above are either semi-automatic
or did not report any validation. Different from them, our
method works in a fully automatic way and is quantitatively
validated through a mutual overlap metric. The rest of the
paper is organized as follows. In Section 2, our automatic
segmentation method for segmentation of the spinal cord and
the dural sac is introduced. Then, experimental results and
discussion are given in Section 3 and Section 4, respectively.
Finally, the conclusions and future directions of research are
explained in Section 5.

II. METHOD

Our segmentation is performed in three steps. In the
preprocessing step, an ROI containing the spinal cord and
the dural sac is extracted. A gradient vector flow (GVF) edge
map and its magnitude are computed in the second step. In
the post-processing step, holes in the connected components
generated by thresholding the the map are filled and small
blobs likely to be noise are eliminated.

A. Preprocessing

In this step, the mid-sagittal image among a set of slice
images is selected based on the slice number information
stored in a Digital Imaging and Communications in Medicine
(DICOM) header. It is reported that the mid-sagittal T2-
weighted image gives the best contrast between the spinal
canal and its adjacent structures [2]. After the middle slice
is selected, an ROI containing the spinal cord is determined.
Empirically, in each mid-slice, the spinal cord is contained
in the middle region, between 150 pixels from the left corner
and 180 pixels from the right corner. The pixels in the
background regions (i.e., other than the selected ROI) are
marked as black to expedite subsequent image processing.

B. Gradient vector flow computation

The traditional active contour model or snake is defined
as an energy-minimizing spline which gives desired image
properties at their local minima of the energy functional [14].
The snake is parametrically defined as v(s) = [x(s), y(s)],



where x(s), y(s) are x−, y− coordinates along the contour
and s ∈ [0, 1]. The energy functional E(C) to be minimized
is expressed as

E(C) =
∫ 1

0
1
2

(
α|v′(s)|2+β|v′′(s)|2

)
+Eext

(
v(s)

)
ds, (1)

where α, and β specify the elasticity and stiffness of the
contour, respectively, and v′(s) and v′′(s) are the first and
second derivatives of v with respect to s. The external energy
term Eext determines the constraints of contour evolution
depending on the image I(x, y). The Euler-Lagrange con-
dition states that the spline v(s) must satisfy the following
condition to minimize E(C)

αv′′(s)− βv′′′′(s)−∇Eext = 0. (2)

This can be regarded as a force balance equation

Fint + F(1)
ext = 0, (3)

where Fint = αv′′(s) − βv′′′′(s) and F(1)
ext = −∇Eext.

The external forces computed from the variational equation
(1) must satisfy the force balance equation (2) as a static
irrotational field [15].

GVF field is invented as a non-irrotational external force
field that points toward the boundary of the object when
in their proximity and varies smoothly over homogeneous
image regions heading towards image borders. Formally, the
GVF field is defined to be the vector field g = (x, y) =(
u(x, y), v(x, y)

)
that minimizes the energy functional

E =
∫ ∫

µ
(
u2
x+u2

y+v2x+v2y
)
+ |∇f |2|g−∇f |2dxdy, (4)

where µ is a regularization parameter balancing the weight
of the first and second terms and the subscripts denote
directional partial derivatives. If |∇f | is small, the energy
functional is dominated by partial derivatives of the vector
field. On the other hand, if |∇f | is large, the energy func-
tional is dominated by the second term. In this equation, a
parameter µ regulates the trade-off between the first and the
second term.

According to variational calculus, the GVF can be ob-
tained by solving the decoupled Euler equations

µ∇2u− (u− fx)(f
2
x + f2

y ) = 0, (5)
µ∇2v − (v − fy)(f

2
x + f2

y ) = 0, (6)

where ∇2 is a Laplacian operator. The equations (5) and (6)
can be solved as separate scalar partial differential equations
in u and v.

Once the GVF field is computed, the magnitude of each
pixel M(x, y) is computed by

M(x, y) =
∣∣√∇g

∣∣. (7)
C. Post-processing

In this step, connected components are filled and small
components are removed. After an edge map is generated and
its magnitude is thresholded, all holes within each connected
component are filled based on 8-connected neighbors. Then,

Fig. 2. Automatic segmentation results based on the GVF field.
the blobs that are less likely to be part of the spinal canal
are eliminated by a connected component analysis. That
is, small components are removed based on the number of
elements in each class. For each class, a membership value
is assigned to each pixel and the number of elements in
each connected component is computed. The component that
has the largest number of elements is firstly classified as
the spinal cord region. After this, connected components
that satisfy the following condition are also classified as the
spinal cord region: 0.65×CL where CL denotes the number
of pixel elements of the largest connected component. This
step includes the cord region that had been excluded in
the segmentation due to intensity variation caused by disc
herniation or spinal stenosis. The coefficient of 0.65 is chosen
heuristically.

III. EXPERIMENTS

The performance of the automatic segmentation based on
the GVF field was compared with the manually marked
boundaries by two trained medical specialists. The experi-
ments were carried out on 52 subjects without any human
intervention. Thus, there was no need to provide any infor-
mation for segmentation of the spinal cord and the dural sac.

A. Image data and standard reference

For MRI segmentation, a total of 646 MR images from
52 subjects of ages between 28 and 84 were used. Images
were taken by a 3-T Philips scanner. The imaging parameters
used for the scanner were echo time of 100 ms, repetition
time of 2622 ms, and slice thickness of 4.5 mm, and matrix
dimension of 512 × 512 pixels. The sagittal slice direction
and a flip angle of 90◦ were employed for all subjects.

Standard reference, i.e., reference segmentation was pro-
vided as a set of x− and y− coordinates by two medical
specialists as previously stated.

B. Automatic segmentation based on GVF field

To generate the GVF field, an edge map f(x, y) should be
calculated from the image I(x, y) in advance. According to
Xu and Prince [15] there are several choices for f(x, y) and
we used f(x, y) = |∇I(x, y)| where I(x, y) is the image.
The regularization parameter µ of 0.1 was used for edge map
generation.

The magnitude of the edge map was used to determine
the contour of the spinal cord and the dural sac and it was
binarized using an optimal threshold calculated by Otsu’s
method. After getting blobs by filling holes of the connected
components, spurious spinal cord regions were eliminated on



the basis of the number of elements in each blob. Once the
final segmentation result using the GVF field was obtained,
it was compared against reference segmentation.

Evaluating a segmentation result usually involves the fol-
lowing two questions [16]: (i) How do we determine whether
or not the segmented area is the right one? (ii) How do we
evaluate the segmentation result objectively?

As a solution to the first question, the spinal cord regions
were manually marked by two medical specialists and the
boundaries of the spinal cord were used as reference segmen-
tation, being regarded as the “right” ones. For the second one,
a mutual overlap approach was adopted. The mutual overlap
metric MSI is based on the area of overlap between the
segmented region by a computer and the standard reference
by humans [17]. Specifically, the mutual overlap metric MSI

is defined as two times the area of the mutual overlap AMO

normalized by the area of reference segmentation AR and
the area of segmented region AS , i.e.,

MSI = 2 · AMO

AR+AS
. (8)

This measure is derived from a reliability measure known
as the kappa (κ) statistic to evaluate the inter-observer
agreement in regard to categorical data. According to this
MSI > 0.8 indicates perfect agreement, 0.6 < MSI ≤ 0.8
represents substantial agreement, and 0.4 < MSI ≤ 0.6
moderate agreement [18]. Since one of our goals for this
research is to develop an automatic segmentation method that
is comparable to human segmentation, we chose to employ
the same metric that measures inter-observer variability.

IV. DISCUSSION

In the experiments, spinal cord segmentation was con-
ducted using 646 MR images from 55 patients. Given a
sagittal slice as in Fig. 1(a), the GVF edge map finds the
contour of the spinal cord and the dural sac accurately as in
Fig. 1(b) since the intensity difference is relatively significant
in this region. The magnitude of the GVF edge map is then
calculated by equation (7). As we can see in Fig. 1(c), the
edge map has larger vector flows near the target contour. In
addition, it shows tiny flow fields in homogeneous regions
in the MR image. After small connected components are
removed, the final segmented result is obtained as in Fig.
1(d). Fig. 2 shows several segmentation results that localize
the spinal cord region.

Table 1 evaluates the segmentation result between the
output by a computer and standard reference by a specialist
in terms of the mutual overlap metric. As the mean similarity
index for both observers are 0.7 with a small difference in
standard deviations (i.e., around 1.4%), the segmented result
from our method matches significantly with the reference
segmentation with little fluctuation.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose an automatic segmentation

method that extracts the spinal cord and the dural sac in T2-
weighted sagittal MR images of lumbar spine. For segmenta-
tion, a gradient vector flow field is employed, followed by a

TABLE I
THE MEAN AND STANDARD DEVIATION OF THE SIMILARITY INDEX

BETWEEN THE AUTOMATIC SEGMENTATION AND STANDARD REFERENCE

Metric Observer 1 Observer 2
Mean of MSI 0.70 0.70

Standard deviation of MSI 0.0501 0.0641

connected component analysis. MR Images taken from fifty
two subjects are employed and the segmentation results are
quantitatively compared against reference segmentation by
two medical specialists in terms of a mutual overlap metric.
The experimental results showed that our method achieved a
similarity index of 0.7 with a standard deviation of 0.0571 on
average that indicated a substantial agreement. In the future,
we plan to apply this segmentation method to computer-aided
diagnosis of many lumbar-related pathologies.
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