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Abstract—Nowadays, mobile devices have become an im-
portant part of our daily life. Numerous mobile sensing
applications are enabled by various mobile platforms, which
leverage machine learning techniques to detect or classify
the events of interest such as human activities and health
conditions. To achieve this, each user is required to provide a
considerable amount of training samples. However, in practice,
a large portion of the users may provide only a few or even
zero labels, due to various reasons such as privacy concern
or simply laziness. A straightforward solution to this problem
is to gather the data of all the users in a central database,
and train a global classifier from the combined data. Such
global classifier, however, may not work well since it ignores
the variety in different users’ data. To address this challenge, we
propose PLOS, a Personalized Learning framework for mObile
Sensing applications. PLOS can jointly model the commonness
shared among the users as well as the differences between them,
which are inferred from both the label information and the
underlying structures of individual data. We further develop
the distributed PLOS where the raw data of the users are
locally processed so that the users only need to send model
parameters to the server. Through extensive experiments on
both synthetic data and real mobile sensing systems, we show
that the proposed PLOS framework is scalable and efficient
in energy, computation, and communication costs, and can
achieve more accurate classification results compared with the
baseline methods.

Keywords-personalized learning; mobile sensing; distributed
machine learning;

I. INTRODUCTION

With the rapid development of sensing, communicating,

and computing technologies, the pervasive mobile smart

devices have revolutionized our daily life with countless

mobile sensing applications [1]–[9], such as health care [1],

smart home [3], assisted driving [7], and intelligent shopping

[8], which fundamentally change the ways in which we

interact with the physical world [4].

In mobile sensing systems, machine learning techniques

are widely applied so that the sensing tasks can be fulfilled

in an automatic and adaptive manner. For example, consider

the task of activity recognition, a classifier can be trained

based on the data collected by mobile devices. When a new

motion is detected, the classifier can automatically recognize

the corresponding activity. Ideally, the classifiers should be

trained based on the individual users’ data. This requires

that each user provides sufficient amount of training samples

to the machine learning algorithms. However, in real-life
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mobile sensing systems, a large portion of the users may
provide only a few or even zero labels, due to various reasons

such as the concern of privacy leakage, the consumption

of time and other resources, or simply carelessness and

laziness. In such cases, it is hard for the classifier to achieve

satisfactory accuracy.

A naive solution to handle insufficient training data for

individual users is to collect many users’ labeled information

and put them into a centralized training pool. Then a global

classifier can be trained on the combined data. However, this

solution has some major drawbacks in real-life applications.

1) To combine the label information from multiple users, it

requires the users upload their raw data to a central server.

In many applications, due to the communication/energy

constraints as well as the privacy concern, it is not feasible.

2) Even if all the data can be delivered to the server, the

global classifier trained upon the combined data may not be

suitable for every user. For example, a classifier learned from

the activity data collected from a group in which the majority

of the people are adults cannot perform well when being

applied to recognize the activities of kids, disabled, and

senior persons. In real world, for many mobile sensing tasks,

such as health condition monitoring, activity recognition,

facial expression recognition, and handwriting recognition,

the learning process needs to be personalized to improve user

experience, since different users may demonstrate different

patterns on the same tasks. Thus, applying the same classifier

on different users will not be able to achieve satisfactory

performance due to the ignorance of individual differences.

To address the aforementioned challenges, we propose a

Personalized Learning in mObile Sensing (PLOS) frame-

work, which jointly captures the commonness and the dif-
ferences of individual users simultaneously. On one hand, by

modeling the commonness, PLOS enables the users to share

knowledge with each other, and thus can benefit the users

with insufficient or even zero training data. On the other

hand, by modeling the differences, PLOS characterizes the

structures of individual data, and thus can benefit the users

with unique data patterns. To achieve this, PLOS jointly

learns a global classifier for all the users and a bias for

each individual. By integrating the global classifier with

individual bias, PLOS produces a personalized classifier for

each user that can maximize the margin between his/her

classes. In a word, PLOS makes a full use of all the available

information from a large population, from label information

to the underlying data structure, and calibrates such informa-
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tion into personalized knowledge for each individual. Such

knowledge personalization from population to individual is

the key achievement of this work.

Moreover, the proposed PLOS framework can be im-

plemented in a distributed and parallel manner, and thus

can address a series of issues such as privacy and com-

putation/communication efficiency. In the distributed PLOS
framework, the raw data are locally processed on the smart

device of each user instead of the server, and the users only

communicate with the server. The benefit of such design is

multi-fold. Firstly, the privacy of each user is protected, as

he/she does not have to share his/her data with the server or

other users. Secondly, the cost of communication is greatly

reduced, since during the learning process, only the model

parameters instead of raw data are exchanged between each

user and the server. Last but most importantly, distributed

PLOS does not sacrifice the learning performance.

In summary, the main contributions of this paper are:

• We address the challenge of personalized learning in

mobile sensing systems, when the users provide in-

sufficient or even no label information to the system.

The proposed PLOS system jointly models users’ com-

monness and uniqueness simultaneously to improve

learning accuracy.

• The proposed PLOS is a distributed framework that has

multi-fold benefits in real-life mobile sensing systems.

The users only communicate with the server with a

considerably small amount of messages. Therefore, the

privacy issue as well as the communication, energy, and

time cost are all addressed.

• The PLOS framework is tested on a real mobile sensing

system, and the experimental results demonstrate its

superior performance in both accuracy and efficiency.

In the rest of the paper, we first discuss the related work

in Section II. Then we formally define the problem and

present an overview of the PLOS system in Section III.

The proposed framework is introduced in Section IV and

Section V and evaluated in Section VI. Finally, we conclude

the paper and discuss some future work in Section VII.

II. RELATED WORK

Personalized Learning. Some previous work has also stud-

ied the personalized learning problem. [10]–[21], most of

them [10]–[17] cannot be applied to the scenarios where

not all the users have label information. But our proposed

framework can relax this assumption and incorporate users

who do not have any labeled data. In [20], the authors

utilize social network as a measure of similarity among

users and then group the users into cliques according to their

similarities. In contrast, we do not assume the availability

of social network information. In [18], [19], the authors

assume that the users can share their data with some of the

other users during the training process. But in our setting,

sharing personal data is not allowed for the sake of privacy

preserving. Furthermore, our proposed method jointly learns

the commonness among the users and the difference between

the users to solve the challenge that users provide insufficient

or even no label information to the system, which are not

considered in previous works.

Transfer Learning. One related area of the proposed

method is transfer learning. Transfer learning refers to a

branch of machine learning tasks, where the knowledge is

learned from one problem domain, called source domain,

but applied to another problem domain, called target do-

main [22]. Transfer learning has been applied in many appli-

cations [23]. In [24]–[27], the authors apply Teacher/Learner

transfer learning model, where the classifier trained on the

teacher sensor provides labels to the learner sensor that is

deployed on the same object as the teacher (e.g., the teacher

sensor and learner sensor are worn on the hand and leg of

the same person). In [3], [28]–[30], the domain adaptation

techniques were applied. After the adaptation, the knowledge

of the sensor on the source object can be used by the sensor

deployed on the target object. Compared with these existing

methods, where the knowledge is one-way transferred from

one or multiple sources to a single target, the proposed

method enables knowledge sharing among all the users so

that they can mutually benefit each other.

Multi-Task Learning. Another related area is multi-task

learning. The goal of multi-task learning is to conduct

multiple similar learning tasks simultaneously. To achieve

this, the multi-task learning models need to capture the

similarities among different tasks. One line of multi-task

learning work handles the similarities among tasks from

the probabilistic point of view [11], [12], [31], [32], while

another line of work uses optimization techniques to model

the similarities [10], [15], [16], [33]–[35]. No matter how

they model the tasks in the aforementioned literature, there

is one requirement in common: all the tasks need to provide

label information. Different from existing multi-task learning

models, the proposed method relaxes this requirement and

thus can be applied to more general scenarios.

Distributed Machine Learning. Our work also relates

to distributed machine learning, which tries to learn from

data that are stored in distributed databases, and are costly

or even infeasible to be transmitted over network due to

their volumes or sensitivity [36]. Studies of distributed

machine learning include distributed classification and re-

gression [37]–[44], distributed clustering [45]–[49], and en-

semble learning [50], [51]. Though following a distributed

design, none of the above work explores personalized learn-

ing for different individuals.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

Considering a mobile sensing task where T users, indexed

as t = 1, · · · , T , cooperate together to train classifiers for

the same purpose, for example, to classify their activities

such as walking, jogging, laying. The data are collected from
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individual users. Using the activity recognition example, the

data are the sensory data (accelerometer, gyroscope, etc)

collected from their mobile devices. Among all the users,

some do not provide any label, while others are willing to

manually label part of their samples. The data provided by

the users may follow different distributions. That is, different

persons may demonstrate different patterns in their activities.

Thus, instead of learning a common decision boundary (i.e.,

classifier) for all the users, our task is to learn a personalized

decision boundary for each user.

Mathematically, we use subscript t to index the notations

with respect to user t, whose data points are denoted as

{x1t ,x2t , · · · ,xmt
}. Without loss of generality, we assume

that the first lt samples in xt are labeled, denoted as

{(x1t , y1t), (x2t , y2t), · · · , (xlt , ylt)}, and the rest mt − lt
samples are unlabeled, denoted as {xlt+1,xlt+2, · · · ,xmt

}.
Note that if a user does not provide labels, lt = 0.

The decision boundary we want to learn is a hyperplane1

ft(x) = wt · x.

Figure 1. Overview of the PLOS System

Figure 1 illustrates the architecture of the proposed PLOS
system. Considering the issues of privacy concern as well

as the bandwidth, computation, and communication cost,

the proposed PLOS framework follows a distributed design

where each user locally conducts calculations on the raw

data, and only communicates to the server with intermediate

model parameters. Specifically, each user has a local dataset

of raw sensory data, some users manually label part of their

data to positive (red dots in Figure 1) or negative (blue

dots), while the others do not provide any label information

(gray dots). The goal of each user is to train a personalized

classifier (arrow lines with green, orange, purple, and blue

color) to classify data into positive or negative. Since all

the users are doing the same activities, their classifiers share

some commonness. Meanwhile, since they demonstrate dif-

ferent patterns in their activities, they have some uniqueness

in their data. The PLOS system models the commonness

1In this format, the hyperplane will have to go through the origin.
Generalization can be easily achieved by adding another dimension on xit
with constant 1. In such way, the corresponding dimension in wt is the
bias of the hyperplane.

among the users with a global classifier (red arrow line), and

allows each individual classifier deviate the global classifier

a bit to reflect their uniqueness. Then the PLOS system

jointly learns the classifiers of each user in a distributed way,

in which the information transmitted between the server and

the users are the parameters of the local classifiers and the

global classifier, instead of the raw data of the users, thus it

can provide more privacy protection for the users and saves

the computation and communication cost. In the following

sections, we first introduce how to address the personalized

learning in the centralized scenario (Section IV), where all

the users need to upload their data to the central server. Then

we extend it to a distributed approach (Section V), in which

the users do not upload their personal data.

IV. CENTRALIZED PLOS

In this section, we describe the centralized PLOS method,

which tackles the problem of personalized learning for mo-

bile sensing tasks. We model this problem in an optimization

framework where a personalized hyperplane is learned based

on not only a user’s individual data but also the knowledge

“borrowed” from other users.

A. The PLOS framework

The proposed PLOS framework inherits the spirit of

Support Vector Machine (SVM), one of the most widely

used classification algorithms. The key idea of SVM algo-

rithm, which is applied in the design of PLOS, is to find a

hyperplane that can maximize the margin (i.e., the distance

from the hyperplane to the nearest data point on each side).

For simplicity, the labels are assumed to be in {−1, 1}.
Mathematically, SVM is formulated as follows:

min
w,ξi≥0

1

2
||w||2 + C

m

m∑
i=1

ξi

s.t. yi(w · xi) ≥ 1− ξi, ∀i = 1, · · · ,m, (1)

where the slack variables ξi are used to allow some degree

of slackness in the constraint so that the algorithm is not

oversensitive to possible outliers.

Though sharing the same spirit, SVM algorithm is not

suitable in our setting due to the following reasons. 1) Some

users do not provide labels for their data. For these users,

SVM cannot be applied. For those who provide labels, the

labeled samples may also be too sparse to train a good

classifier. 2) If we use the data from all users to train a

single global SVM classifier, there may be enough training

samples, but the different patterns lying in individual users’

data are disregarded. Consequently, the global classifier may

not be able to accurately classify each individual user’s data.

To conquer these challenges, the idea of the proposed

model is to jointly consider the labeled and unlabeled

data from all users, identify their commonness, and at the

same time capture their individual characteristics. On one

hand, the commonness is shared among all users, so the

information from different users can be unified to help each
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other, especially the users who have no labeled data. On

the other hand, individual users may behave differently,

so the personalized learning can improve the classification

performance by characterizing the difference among users.

We model the commonness among all individual hy-

perplanes wt as a global hyperplane w0. And we let the

first n of the total T datasets have labels. Inspired by the

idea of maximum margin clustering [52], we formulate our

framework as the following two-layer optimization problem:

min
{yit}∀i=lt+1,··· ,mt

min
w0,wt,ξit≥0

{
||w0||2 + λ

T

T∑
t=1

||wt −w0||2

+
T∑

t=1

(
Cl

mt

lt∑
i=1

ξit +
Cu

mt

mt∑
i=lt+1

ξit)
}

s.t. ∀t = 1, · · · , T :

yit(wt · xit) ≥ 1− ξit , ∀i = 1, · · · ,mt. (2)

The inner optimization tries to find the best hyperplanes

given the current label assignments yit , ∀i = 1, · · · ,mt. The

outer optimization tries to find the best label assignments for

the unlabeled data yit , ∀i = lt + 1, · · · ,mt. Note that yit is

a constant (i.e., user-provided label) if i � lt.
In the objective function of the inner optimization prob-

lem, there are three parts needed to be minimized. The first

part ||w0||2 maximizes the margin of the global hyperplane
2

||w0|| . The second part λ
T

∑T
t=1 ||wt − w0||2 minimizes

the difference between the global hyperplane and those

of the users. And the third part
∑T

t=1(
Cl

mt

∑lt
i=1 ξit +

Cu

mt

∑mt

i=lt+1 ξit) indicates the classification errors given the

current label assignments. The slack variable ξit can be

derived from the constraint: ξit ≥ max{0, 1−yit(wt ·xit)}.
Therefore, minimizing ξit is equivalent to minimizing the

error of the model on xit .

There are three predefined parameters in the objective

function, namely λ, Cl, and Cu. λ is a positive regularization

parameter that controls how much wt can differ from the

global hyperplane w0. When λ is large, it will give more

penalties on ||wt −w0||2, so the hyperplanes for the users

will be more similar to each other. On the other hand,

when λ is small, the hyperplanes will rely more on the

individual users’ data. Cl and Cu together control the

weight of ξit , the learning errors. Moreover, Cl and Cu also

control the importance of the labeled data and unlabeled data

respectively.

One difficulty of solving the problem (2) comes from the

fact that we have to minimize the objective function with re-

spect to all label assignments on yit , ∀i = lt+1, · · · ,mt. In

fact, for any given w0 and wt, the optimal label assignments

are yit = sign(wt · xit). It can be easily derived from the

fact that these assignments give the minimum classification

errors, which implies the minimum ξit , and thus the optimal

objective value. Therefore, the outer optimization can be

merged into the inner optimization, and yit(wt · xit) can

be replaced by |wt · xit |. Then, the optimization problem

(2) is equivalent to:

min
w0,wt,ξit≥0

{
||w0||2 + λ

T

T∑
t=1

||wt −w0||2

+
T∑

t=1

(
Cl

mt

lt∑
i=1

ξit +
Cu

mt

mt∑
i=lt+1

ξit)
}

s.t. ∀t = 1, · · · , T :

yit(wt · xit) ≥ 1− ξit , ∀i = 1, · · · , lt,
|wt · xit | ≥ 1− ξit , ∀i = lt + 1, · · · ,mt. (3)

In the above optimization problem, the number of slack
variables ξit are as many as the number of data samples.
To reduce the number of slack variables, we reformulate the
optimization problem to the following:

min
w0,wt,ξt≥0

{
||w0||2 + λ

T

T∑
t=1

||wt −w0||2 +
T∑

t=1

ξt
}

s.t. ∀t = 1, · · · , T, ∀ct ∈ {0, 1}mt :

1

mt

{
Cl

lt∑
i=1

cityit(wt · xit) + Cu

mt∑
i=lt+1

cit · |wt · xit |
}

≥ 1

mt

{
Cl

lt∑
i=1

cit + Cu

mt∑
i=lt+1

cit

}
− ξt, (4)

where each ct = (c1t , · · · , cmt
) ∈ {0, 1}mt selects a

subset of the constraints in problem (3) to add them up.

The equivalence is established since problem (3) and (4)

have the same solution. For any given w0, wt, the ξit in

problem (3) can be optimized individually. The optimum of

(3) is achieved when

ξ∗it =

{
max{0, 1− yit(wt · xit)} i = 1, · · · , lt;
max{0, 1− |wt · xit |} i = lt + 1, · · · ,mt.

(5)

Similarly, the optimal ξt in problem (4) is

ξ∗t = max
ct∈{0,1}mt

{ Cl

mt

lt∑
i=1

cit

[
1− yit(wt · xit)

]

+
Cu

mt

mt∑
i=lt+1

cit

[
1− |wt · xit |

]}
. (6)

It is clear that ξ∗t = Cl

mt

∑lt
i=1 ξ

∗
it
+ Cu

mt

∑mt

i=lt+1 ξ
∗
it

. Thus,

the objective function of problem (3) and problem (4) have

the same value. Hence, we conclude that problem (3) and

problem (4) are equivalent.

We can simplify the optimization problem (4) through

feature mapping and the kernel as described in [33]. Specif-

ically, we define that

Φ(xit) = (
xit√
T/λ

,0, · · · ,0︸ ︷︷ ︸
t−1

,xit ,0, · · · ,0︸ ︷︷ ︸
T−t

), (7)

where 0 is a zero vector with the same dimension as xit .

We also define that

w′ = (
√

T/λw0,w1 −w0, · · · ,wT −w0). (8)

Then we have wt · xit = w′ · Φ(xit) and ||w0||2 +
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λ
T

∑T
t=1 ||wt − w0||2 = λ

T ||w′||2. Substituting them into

(4) and multiplying the objective function by a constant T
2λ ,

we can reformulate the optimization problem to contain only

one hyperplane w′ as follows:

min
w′,ξt≥0

{1

2
||w′||2 +

T

2λ

T∑
t=1

ξt
}

s.t. ∀t = 1, · · · , T, ∀ct ∈ {0, 1}mt :

1

mt

{
Cl

lt∑
i=1

cityit (w
′ · Φ(xit )) + Cu

mt∑
i=lt+1

cit · |w′ · Φ(xit )|
}

≥ 1

mt

{
Cl

lt∑
i=1

cit + Cu

mt∑
i=lt+1

cit

}
− ξt. (9)

B. Optimization via concave-convex process

Problem (9) is non-convex since the constraints are non-

convex. However, if the constraints can be expressed as the

difference of two convex functions less than or equal to a

constant, the concave-convex process (CCCP) can be used

to solve this problem [53]. CCCP is an iterative process.

The main idea is that at each iteration, the constraints are

approximated by convex functions localized at the previous

estimations (or an initialization if this is the first iteration),

and then solve the approximated problem and update the

estimations. To construct the convex approximation, the

second convex function is replaced by its first-order Taylor

expansion at the previous estimation.

Specifically in problem (9), the constraints can be

expressed as the difference of the following two con-

vex functions less than or equal to a constant: −ξt −
Cl

mt

∑lt
i=1 cityit(w

′ · Φ(xit)) and Cu

mt

∑mt

i=lt+1 cit · |w′ ·
Φ(xit)|. If the previous estimation is (w′(k), ξ(k)t ), then

|w′ · Φ(xit)| in the second convex function is replaced by

its first-order Taylor expansion at (w′(k), ξ(k)t ) as follows:

|w′(k) · Φ(xit)|+ sign(w′(k) · Φ(xit))(w
′ −w′(k)) · Φ(xit)

= sign(w′(k) · Φ(xit))(w
′ · Φ(xit)). (10)

Plugging Equation (10) into the problem (9), we get:

min
w′,ξt≥0

{1

2
||w′||2 + T

2λ

T∑
t=1

ξt
}

s.t. ∀t = 1, · · · , T, ∀ct ∈ {0, 1}mt :

1

mt

{
Cl

lt∑
i=1

cityit(w
′ · Φ(xit))

+Cu

mt∑
i=lt+1

cit · sign(w′(k) · Φ(xit))(w
′ · Φ(xit))

}

≥ 1

mt

{
Cl

lt∑
i=1

cit + Cu

mt∑
i=lt+1

cit

}
− ξt. (11)

Problem (11) is a convex optimization problem and we

can get a new estimation (w′(k+1), ξ
(k+1)
t ) by solving it.

The CCCP process will monotonically decrease the objective

value [54], which is also bounded. So the convergence is

guaranteed.

Problem (11) is still difficult to solve because there are

as many as
∑T

t=1 2
mt constraints which come from the

2mt possible assignments of vector ct. In order to solve

(11) efficiently, we apply the cutting plane algorithm [55].

The main idea of the cutting plane algorithm is to construct

successively tighter relaxations to the problem until getting

a sufficiently accurate solution. Specifically, we keep a

constraint subset Ωt (empty set as initialization). At each

step, we solve the problem with respect to ∀ct ∈ Ωt, t =
1, · · · , T . Then we find the most violated constraint and

add it to the constraint subset Ωt. With the growth of Ωt,

a successively tightened approximation of the problem (11)

is constructed. The algorithm stops when the most violated

constraint is violated by no more than ε.
Mathematically, the optimization problem in each step of

the cutting plane algorithm has the following form:

min
w′,ξt≥0

{1

2
||w′||2 + T

2λ

T∑
t=1

ξt
}

s.t. ∀t = 1, · · · , T, ∀ct ∈ Ωt :

1

mt

{
Cl

lt∑
i=1

cityit(w
′ · Φ(xit))

+Cu

mt∑
i=lt+1

cit · sign(w′(k) · Φ(xit))(w
′ · Φ(xit))

}

≥ 1

mt

{
Cl

lt∑
i=1

cit + Cu

mt∑
i=lt+1

cit

}
− ξt. (12)

The most violated constraint is defined as the constraint

ct that produces the largest ξt, i.e.,

ct = argmax
ct∈{0,1}mt

{ Cl

mt

lt∑
i=1

cit

[
1− yit(w

′ · Φ(xit))
]

(13)

+
Cu

mt

mt∑
i=lt+1

cit

[
1− sign(w′(k) · Φ(xit))(w

′ · Φ(xit))
]}

.

Since each cit can be optimized individually, it is easy to

find that the most violated constraint can be chosen as:

cit =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 yit(w
′ · Φ(xit)) < 1, ∀i = 1, · · · , lt;

1 sign(w′(k)t · Φ(xit))(w
′ · Φ(xit)) < 1,

∀i = lt + 1, · · · ,mt;

0 otherwise.

(14)

If the solution (w′∗, ξ∗t ) of the problem (12) and most

violated constraint ct of all the tasks satisfy the following

inequality:

ξ∗t + ε ≥ Cl

mt

lt∑
i=1

cit

[
1− yit(w

′∗ · Φ(xit))
]

(15)

+
Cu

mt

mt∑
i=lt+1

cit

{
1− sign(w′(k) · Φ(xit))(w

′∗ · Φ(xit))
}
,

it means (w′∗, ξ∗t + ε) is a feasible solution to the problem

(11). Then the cutting plane algorithm can stop.

We can optimize the dual form of problem (12) through
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quadratic programming. The primal problem (12) is a convex

problem, so Karush-Kuhn-Tucker (KKT) conditions are nec-

essary and sufficient conditions for optimization. The dual

optimization problem is as followed:

max
γkt
≥0

− 1

2
||

T∑
t=1

|Ωt|∑
k=1

γkt ẑkt ||2 +
T∑

t=1

|Ωt|∑
k=1

γkt ĉkt

s.t.

|Ωt|∑
k=1

γkt ≤
T

2λ
, (16)

where

ẑkt =
Cl

mt

lt∑
i=1

citktyitΦ(xit)

+
Cu

mt

mt∑
i=lt+1

citkt · sign(w′(k) · Φ(xit))Φ(xit), (17)

ĉkt =
Cl

mt

lt∑
i=1

citkt +
Cu

mt

mt∑
i=lt+1

citkt . (18)

This is a quadratic programming (QP) problem with vari-

ables (γkt)1×∑T
t=1 |Ωt|. So it can be solved via the standard

form. We omit the details of derivations in this paper.

After solving the QP problem, we get the solution w′∗ and

therefore can calculate the slack variable ξ∗t and the optimal

value of the objective function L = 1
2 ||w′||2 + T

2λ

∑T
t=1 ξt

in the primal problem (12).

The algorithm flow is summarized in Algorithm 1.

Algorithm 1 : Centralized PLOS
1. Initialization. Set λ,Cl, Cu, ε,w

′(0);
2. The CCCP process. Apply first-order Taylor expansion to
|w′ · Φ(xit)| to get the convex optimization (11);
3. The cutting plane process. Initialize Ωt = φ;
4. Solve problem (12) via its dual problem (16) to get w′∗ and
the primal form (12) to get ξ∗t and L∗;
5. Calculate the most violated constraint ct of each user via
equation (14).
6. If ∀t, ct violate ξ∗t no more than ε, goto step 7; otherwise,
Ωt = Ωt ∪ ct and goto step 4;
7. If the difference between two consecutive L∗ is less than a
given threshold, output w′∗; otherwise goto step 2.

V. DISTRIBUTED PLOS
The centralized PLOS method requires all users upload

their data to the central server, so that the server can conduct

all the computations. However, in real-life scenarios, the cen-

tralized methods may be inapplicable due to various reasons,

such as privacy issues, bandwidth/energy constraints, and

computation time requirement. Therefore, we further extend

the centralized PLOS into a distributed method, where each

user can locally conduct computations on the raw data, and

only upload the intermediate results to the server. Compared

with the centralized PLOS, the proposed distributed PLOS
method can better handle the aforementioned problems.

The distributed PLOS method is developed based on

the alternating direction method of multipliers (ADMM)

framework [56]. ADMM is designed to solve a convex

problem with equality constraints and it splits the variables

into two parts x and z to exploit the decomposability of the

variables.

In order to apply ADMM to solve the optimization

problem (4), we firstly use the CCCP approach to convert it

into a convex problem and add wt = w0+vt as a constraint

to the problem. Thus, the problem is transformed as follows:

min
w0,vt,wt,ξt≥0

{
||w0||2 + λ

T

T∑
t=1

||vt||2 +
T∑

t=1

ξt
}

s.t. ∀t = 1, · · · , T, ∀ct ∈ {0, 1}mt :

1

mt

{
Cl

lt∑
i=1

cityit(wt · xit)

+Cu

mt∑
i=lt+1

cit · sign(w(k)
t · xit)(wt · xit)

}

≥ 1

mt

{
Cl

lt∑
i=1

cit + Cu

mt∑
i=lt+1

cit

}
− ξt,

wt = w0 + vt. (19)

As an equivalent transformation, if we replace the slack

variables ξt’s by their optima

ξ∗t = max
ct∈{0,1}mt

{ Cl

mt

lt∑
i=1

cit(1− yit(wt · xit))

+
Cu

mt

mt∑
i=lt+1

cit(1− sign(w
(k)
t · xit)(wt · xit)

}
, (20)

we can move the inequality constraint to the objective

function and remove the slack variables ξt. Then the rest

variables are partitioned as x = [wT
1 ,v

T
1 · · · ,wT

t ,v
T
t ]

T ,

and z = w0. Then, we can define function g(z) = ||w0||2
and f(x) the rest in the objective function (19). Obviously,

g(z) and f(x) are convex. The objective function in (19)

is decomposable with respect to each variable in x. The

augmented Lagrangian [57] is then

Lρ(x, z, y) = f(x) + g(z) + (ρ/2)
T∑

t=1

||wt − vt −w0 + ut||2,
(21)

where u = (u1, · · · ,uT ) are the scaled dual variables.

The calculation of x can be decomposed. Specifically, the

update of wt and vt can be locally conducted by user t
without communicating with any other user. Each user solves

the following QP problem using the cutting plane algorithm

with his/her local constraint subset Ωt.

min
wt,vt,ξt≥0

{
ξt +

λ

T
||vt||2 + (ρ/2)||wt −w0 − vt + ut||2

}
s.t. ∀t = 1, · · · , T, ∀ct ∈ Ωt :

1

mt

{
Cl

lt∑
i=1

cityit(wt · xit)

+Cu

mt∑
i=lt+1

cit · sign(w(k)
t · xit)(wt · xit)

}

≥ 1

mt

{
Cl

lt∑
i=1

cit + Cu

mt∑
i=lt+1

cit

}
− ξt. (22)
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The solution (wt,vt, ξt) is then uploaded to the central

server where the closed form of z(k+1), u(k+1) and the

objective function value L can be derived as:

w
(k+1)
0 =ρ

T∑
t=1

(w
(k+1)
t − v

(k+1)
t + u

(k)
t )/(2 + Tρ),

u
(k+1)
t =u

(k)
t + (w

(k+1)
t −w

(k+1)
0 − v

(k+1)
t ), ∀t = 1, · · · , T,

L(k+1) =||w(k+1)
0 ||2 + λ

T

T∑
t=1

||v(k+1)
t ||2 +

T∑
t=1

ξ
(k+1)
t . (23)

After the central server updates z and u, it scatters

them back to each user to locally update x again until

convergence. In this way, the individual users only need to

communicate with the server and exchange the estimations

of the parameters. There is no raw data involved in the com-

munication and there is no information exchange between

users. Thus the privacy of individual users are protected and

the communication cost is also greatly reduced.

The ADMM loop can be set to stop when the norm of the

dual residuals s(k+1) and the primal residuals r(k+1) are less

than their thresholds
√
2Tεabs and

√
Tεabs respectively [56].

||s(k+1)|| =ρ
√
2T ||w(k+1)

0 −w
(k)
0 ||,

||r(k+1)
t || =

√√√√ T∑
t=1

||u(k+1)
t − u

(k)
t ||2. (24)

The detailed steps are summarized in Algorithm 2.

Algorithm 2 : Distributed PLOS
1. Initialization. Set λ,Cl, Cu, ε,w

(0)
0 ,u

(0)
t ;

2. The CCCP process. The server applies first-order Taylor
expansion to |wt · xit | to get the convex optimization (19);
3. The ADMM process. The server delivers w0, ut to all users
and each user set local Cl, Cu, ε

abs, ρ,Ωt = φ;
4. The cutting plane process. Each user solves the problem (22)
to get (w∗t ,v

∗
t , ξ

∗
t ) and send them to the server;

5. The server calculates w0,ut, the objective function value L
using (23), and the residuals using (24);
6. If the residuals are less than the thresholds εdual,εpri, goto step
7; otherwise, goto step 3;
7. If L does not converge, goto step 2.

VI. EXPERIMENTS

In this section, we test the proposed method on both

real-world and synthetic datasets. We also implement the

distributed PLOS framework upon a real mobile sensing

system. The experimental results show that PLOS performs

considerably better than the state-of-the-art methods under a

wide spectrum of scenarios. We first discuss the experiment

setup in Section VI-A. We then present experimental results

on the body sensor data in Section VI-B, on the smartphone

data in Section VI-C, and on different scenarios of simulated

datasets in Section VI-D. Finally, the distributed PLOS is

tested on a smartphone platform in Section VI-E.

A. Experiment Setup

In this part, we introduce the baseline methods and the

performance measures used in the evaluation.

Baseline Methods. We consider three types of baseline

methods: a totally centralized method, a totally localized

method and a group-based method. The details of the

baseline methods are as follows.

• All. This baseline is a centralized method. All users

are required to upload their data to the server along

with the labels if there are any. The server will train a

single global hyperplane from all the labeled samples,

and apply this global hyperplane on the data of all the

users.

• Single. This baseline is a localized method. Each user

locally conducts classification/clustering based on only

his own data. If a user has labels, then an SVM classi-

fier is trained from the labeled samples. Otherwise, the

k-means algorithm is applied to derive the clusters. The

evaluation is also conducted locally. Since the cluster

may mismatch with the ground truth labels, we conduct

label matching on the clustering results and evaluate

them under the best class assignments. On a specific

type of users, we report the average.

• Group. This baseline is a group-based method. We

measure the similarity between the users based on

their sensory data. Specifically, given two users u, v,

we first apply the random hyperplane algorithm [58]

on their sensory data, which hashes the continuous

sensory data to n discrete buckets while keeping the

distance between the data. Let (u1, u2, · · · , un) and

(v1, v2, · · · , vn) represent the frequencies that the data

of u and v appear in these buckets respectively, the

similarity between u and v can be defined as the overlap

between their sensory data, S(u, v) =
∑

i min(ui,vi)∑
i max(ui,vi)

,

which is known as the Jaccard similarity coefficient.

Knowing the similarity between the users, we further

cluster similar users into a group through spectral

clustering, within which the users share their data and

labels. Finally, we conduct classification/clustering in

each group and apply the learned hyperplane to all the

users in that group. In all our experiments, n is set to

be 128 and the number of clusters is set to be 3.

Performance Measures. In the experiments, to evaluate

the performance, we adopt the accuracy of the classifi-

cation/clustering results. More specifically, we apply the

learned hyperplanes on the data and calculate the difference

between the labels assigned by the hyperplanes and the

ground truth labels. We report the accuracy on users with

labels and without labels separately, since the methods may

behave differently on different types of users. In addition,

we select parameters for both the baseline methods and our

proposed method based on the accuracy reported by leave-

one-out cross-validation.

B. Experiments on Body Sensor Data

In this section, we build a body sensor network for each

user to collect his/her motion information. In this sensor

327



network, data are collected from multiple human motion

sensing nodes placed in different body areas, and then

we apply our personalized learning approach to verify its

advantage.

Experimental Setup. The human motion sensing node in

our experiment is TelosB, which carries a custom-built

sensor board containing a triaxial accelerometer and a biaxial

gyroscope. It also includes IEEE 802.15.4/ZigBee compliant

RF transceiver so that data from all the nodes can be

gathered at one base station through ZigBee.g g

Figure 2. Sensors are placed on 3 different regions on the body: waist,
left shin, and right shin.

20 subjects (age between 18 and 35) participated in

our study. Each subject wore three sensing nodes on three

different regions of his/her body, i.e., waist, left shin, and

right shin as shown in Figure 2. In order to make the settings

more practical, no instruction was given to the subjects

regarding the exact placement and orientation of the sensing

nodes and the subjects are allowed to place the devices

anywhere in the requested body areas. They can also choose

to attach the sensing nodes to the skin or to the clothes. Each

subject wore the sensing nodes for 5 minutes, during which

he/she was asked to perform two kinds of activities: rest at

standing and rest at sitting.

The data collected from each sensing node contain 5

signals, i.e., x,y,z axis of the accelerometer and u,v axis of

the gyroscope. They were first downsampled to 20 Hz and

normalized. Then we split all the signals by a fixed-width

sliding window of 3.2 seconds with 50% overlap, which gen-

erates 70 segments of accelerometer and gyroscope signals

for each activity. Next, we convert each segment into feature

vectors by extracting features from two aspects. The first

aspect contains the features that can characterize each single

signal, such as: mean, standard deviation, median absolute

deviation (MAD), maximum, minimum, energy, interquartile

range. The second aspect contains the features that are

derived from several related signals: magnitude of three axes

of accelerometer, the angles between the acceleration and the

three axes, and signal magnitude area (the normalized inte-

gral of absolute value) of accelerometer output. Finally, the

feature vectors of all the three sensing nodes are combined

to create a feature vector of 120 dimensions.

Effect of the Number of Users Who Provide Labels.

We first evaluate whether increasing the number of users

who provide labels can help learn more accurate classifiers

on the collected dataset. In order to do this, we gradually

increase the number of users who provide labels, from 2

users to 18 users. Meanwhile, for users who provide labels,

we set that they randomly labeled 6% of their data, (i.e.,

approximately 4 samples for each activity). We present the

results in Figure 3.

From Figure 3, we can observe that the performance of

Single on users with and without labels does not improve

because the users do not have sufficient labeled data and

they do not borrow information from their peers. All is able

to learn a better global classifier when the number of people

increases because they bring more labels, which overcomes

the issue of insufficient labels in Single. But it still has the

defect of ignoring the difference among different users. The

performance of Group can also improve as more people

provide label information. However, the improvement lags

behind All because the increased label information cannot

be used by the users in the other groups. PLOS further

improves the performance since it can capture the structures

of individual users’ data and train a personalized classifier

for each of them. The improvement is more obvious to

users who provide labels, because the label information

can strongly guide the discovery of the underlying data

structures.
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Figure 3. Accuracy comparison on body sensor dataset w.r.t. the number
of users who provide labels

Effect of the Size of Training Data. In this experiment, we

randomly pick 9 users as label-providers and then observe

how the number of labels they provide will influence their

classification accuracy. In Figure 4, we vary the percentage

of labels from 4% to 48% (i.e., around 3 samples to 34

samples out of the total 70 samples are labeled) and plot

the classification accuracy of our approach and the two

baselines.

All performs similarly compared with the previous ex-

periment. In fact, the two experiments have an equivalent

effect on All: the accuracy improves because there are more

training data. Single performs poorly when the training

data size is small, but improves dramatically on the users

who provide labels as the training data increases and finally

exceeds All. This implies that the users indeed demonstrate

different patterns in their activities. However, the accuracy

remains low on the users without labels. This is because

that the users cannot help each other by sharing information.

The performance of Group is in the middle. For users with

labels, when there are enough labels, Group performs better
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than All but worse than Single because it only considers the

individual difference among the groups, but not inside the

groups. For users without labels, Group performs better than

Single but worse than All because it only utilizes the labels

inside the group but not those outside the group. By jointly

modeling the commonness and differences among users,

the proposed PLOS framework combines the strengths of

All and Single, and conquers their weaknesses. Therefore,

PLOS performs the best on all users in all scenarios.
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Figure 4. Accuracy comparison on body sensor dataset w.r.t. the percentage
of labeled data on the users who provide labels

C. Experiments on Smartphone Data

In this section, we conduct experiments on a real world

mobile sensing dataset. The results clearly demonstrate the

advantages of the proposed personalized learning frame-

work.

HAR Dataset. UCI Human Activity Recognition (HAR)

dataset [59] contains the recordings of 30 persons perform-

ing six different activities while wearing smartphones with

embedded inertial sensors (accelerometer and gyroscope) on

the waist. The activities include walking, walking upstairs,

walking downstairs, sitting, standing, and laying. The read-

ings form 561 features. In the following experiments, we

consider the classification of sitting and standing, as this

is the least separable pair among these six activities. There

are around 50 samples for each activity from each person

for this classification task, but only a very small portion (or

none) of them are labeled.

To evaluate the performance of the proposed method, we

conduct a series of experiments with different settings.

Effect of the Number of Users Who Provide Labels.

Like previous experiment, we gradually add more users who

provide labels, and we also set that they randomly label 6%
of their data (i.e., around three samples for “sitting” and

three samples for “standing” for each user who provides

labels).

In Figure 5, we plot the accuracies on the users with labels

and without labels with respect to the number of users who

provide labels. It shows the same pattern as the experiment

on body sensor dataset, except that gap of accuracy between

All and PLOS is smaller. The reason may be that the body

sensor dataset captures more personal traits of the users

from two aspects. 1) sensor nodes placed on more body

regions can provide a more complete view of the motion of

a user; and 2) we allow the users to place the motion sensor

anywhere in the required area, so users are more likely

to place the motion sensors according to his/her personal

habit, perhaps in different positions or different orientations.

These reasons can also explain the phenomenon that Group
performs similar to All and better than Single on users with

labels. The results in this experiment further back up the

advantage of the proposed PLOS framework.
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Figure 5. Accuracy comparison on HAR dataset w.r.t. the number of users
who provide labels

Effect of the Size of Training Data. In this experiment,

we randomly pick 15 users as the label providers. We

gradually increase the number of labeled data in each of

label provider’ data. The results on labeled dataset are

presented in Figure 6(a). The trend of all the methods is

similar to that on the body sensor dataset. We find that

when there are plenty of labels from users, the accuracy

of Single and Group are closer to All than on the body

sensor dataset. This conforms to our previous analysis that

the body sensor dataset embodies more personal traits due

to more sensing nodes and flexible experimental setup. In

such condition, PLOS still performs the best among the

three. The experimental results on unlabeled dataset are

shown in Figure 6(b). Since the increase of the labeled data

will not influence the clustering on unlabeled dataset, the

accuracy of Single keeps low. When the number of training

data increases, the performance of Group, All and PLOS
increases. These patterns are similar to the experiment on

body sensor dataset.
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Figure 6. Accuracy comparison on HAR dataset w.r.t. the percentage of
labeled data on the users who provide labels

Effect of λ. As discussed earlier, the proposed PLOS frame-

work performs the best because it can train personalized

classifiers learned based on both individual data and the

knowledge borrowed from other users. The balance of the

two is controlled by λ. If λ is large, PLOS would enforce

that the users share a similar hyperplane, so the results

would lean towards All; If λ is small, then the results would
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lean towards Single. We examine the performance of PLOS
with respect to log(λ) in the scenario that 15 users provide

labels and they label 6 samples in their data. The results are

presented in Figure 7.

It can be seen that the accuracy of all users reaches

the best value when log(λ) is around 2. The performance

degrades when log(λ) is either too small or too large.

These experimental results confirm that there exist both com-

monness and difference in the activity patterns of different

people.
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Figure 7. Accuracy comparison on HAR dataset w.r.t. the model param-
eters

D. Experiments on Synthetic Data

In this section, we use synthetic data to further test

the proposed method under more general scenarios. In

particular, we generate datasets containing two classes: +1
and −1. For each class, we generate 200 data points from

a Normal distribution. More specifically, Normal(μ =

(10, 10),Σ =

[
225 −180
−180 225

]
) for +1 class and Normal(μ =

(−10,−10),Σ =

[
225 −180
−180 225

]
) for −1 class. To make the

simulation more realistic, we randomly swap 10% of the

ground truth labels, as in the real world applications, the

data are rarely separable.

Effect of the Difference Levels among Users. In this

experiment, we examine how the levels of differences among

users can affect the proposed personalized leaning method.

Intuitively, if the differences are large, then All may not

perform well since it ignored the differences among the

users. On the other hand, Single will not be affected much

as it is trained on individual users’ data. Group will be

in the middle because it is able to learn different hyper-

planes for different groups. The proposed PLOS method,

considering both differences and commonness among the

users, can perform much better than the baseline methods.

To simulate different users, we first generate a data set from

the aforementioned Gaussian distribution and then rotate the

data around the origin with different angles. One rotation of

the original data corresponds to the data from one user. Thus,

with a given maximum rotation angle, we can generate 10
users with uniform rotation angles. Among the users, 5 of

them provide labels for 8 samples (four from +1 class and

four from −1 class).

The experimental results are shown in Figure 8. The

curves match our expectation perfectly. When the maximum

rotation angle increases, the users are more different from

each other, so the performance of All degrades quickly. The

performance of Single stays the same and the performance

of Group decreases slower than All, which are all expected.

The accuracy of PLOS also decreases slightly but it is

still the best. Note that the decrease is faster on the users

without labels than the users with labels. This is because that

when the users differ a lot, the users without labels cannot

“borrow” too much helpful knowledge from the users with

labels, and thus suffer more on the performance.
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Figure 8. Accuracy comparison on the synthetic dataset w.r.t. the rotation
angles

Effect of Other Settings. Similar to the experiments on the

real dataset, we also examine the performance of the pro-

posed method with respect to the number of label providers

and labeling percentage, respectively. In both experiments,

we fix the maximum rotation angles to be π/2. For the

former, we set the labeling percentage to be 2%, and for

the latter, we set the number of label-providing users to

be 5. The results are presented in Figures 9 and 10. The

figures show similar patterns as the experiments on the

real dataset, which confirms the advantages of the proposed

method. In addition, in Figure 9 the standard deviation

of PLOS decreases from 7.37% to 0.75% on users with

labels and decreases from 8.39% to 3.19% on users without

labels when the labeling percentage increases from 1% to

10%, which means as the labeling percentage increases, the

uncertainty of the PLOS decreases on both types of users.
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Figure 9. Accuracy comparison on synthetic dataset w.r.t. the number of
users who provide labels

E. Experiments on Distributed PLOS
In this section, we evaluate the accuracy and the scal-

ability of the proposed distributed PLOS on a distributed

mobile sensing system. The server is emulated by an Intel(R)

Core(TM) 3.4GHz computer with 16GB of memory, and the

users use Nexus 5 android phones as their sensing devices.
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Figure 10. Accuracy comparison on synthetic dataset w.r.t. the percentage
of labeled data on the users who provide labels

Each user generates his/her own data as discussed before. In

order to evaluate the performance of the distributed PLOS
method on different scales, we vary the number of users

from 10 to 100. We set the ρ = 1, εabs = 0.001 as the step

size and the stopping criteria respectively.

Accuracy Comparison with the Centralized PLOS. We

first evaluate the classification accuracy of the distributed

PLOS algorithm. As shown in Figure 11, the difference of

accuracy between the distributed PLOS and the centralized

PLOS is close to zero for both users with and without

labels, which indicates that the distributed PLOS is a good

approximation to the centralized PLOS.
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Figure 11. Difference of accuracy between the centralized PLOS and the
distributed PLOS

Computational Cost. We further compare the running time

of the centralized PLOS and the distributed PLOS. The

centralized PLOS runs on the server and the running time is

determined by how fast it can solve the optimization problem

(4). On the other hand, the distributed PLOS allocates

most of the calculation to smartphones. The smartphones

conduct calculations in parallel, so the total running time is

determined by the time consumption of the smartphone that

processes the most amount of data. From Figure 12, we find

that the centralized PLOS runs faster than the distributed

PLOS when the number of users is small. However, as the

number of users increases, the running time of centralized

PLOS increases superlinearly, while that of the distributed

PLOS almost keeps the same. This is because that adding

more users increases the variables to the QP problem on

the server, so it takes longer to solve the optimization

problem. However, for the distributed PLOS, adding more

users does not add variables to the QP problem on individual

smartphones, so for each user, the running time stays almost

the same.
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distributed PLOS
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Figure 13. The message
overhead of one user in the
distributed PLOS

Communication Overhead and Convergence. Finally, we

evaluate the number of messages that each user has to send

to and receive from the server in the distributed PLOS. As

discussed before, users do not upload their raw data to the

server, but only exchange model parameters with the server.

Thus, the communication overhead is determined by the total

number of iterations that the algorithm needs to converge.

We can see from Figure 13 that the message overhead of the

individual users is reasonable and remains stable regardless

of the number of users in the system. This result also implies

that distributed PLOS converges at a stable rate.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study personalized learning in mobile

sensing. The proposed PLOS framework enables person-

alized learning without requiring all of the users’ data

delivered to the server. It combines the knowledge from the

users but at the same time also recognizes their uniqueness.

The distributed nature of PLOS enables the knowledge

sharing among the users with their privacy being preserved

since the users neither upload the raw data nor communicate

with other users. It is also efficient in terms of energy,

computation, and communication costs.

In this paper, we mainly focus on SVM as it is one of the

most widely adopted classification models. In the future, we

will consider to extend the proposed framework to other ma-

chine learning models. Additionally, the current distributed

algorithm is mainly designed for the synchronous distributed

system. For the asynchronous scenario, for instance, some

users may delay their responses for arbitrarily long, we will

leave it as our future work.
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