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Abstract—Human activities of daily life (ADL) monitoring has
been applied in life-critical applications such as occupational
safety and stroke rehabilitation tracking. However, wearable
computing, as the main technical paradigm of ADL monitoring,
requires tremendous efforts to obtain satisfactory inertial data
with labels for training. In this paper, we develop VisualAcc,
a high-fidelity optic-to-inertia framework of human locomotion
for wearable computing, which leverages harvested light-intensity
data from public videos to reconstruct authentic wearable motion
data. Specifically, a two-step optical motion estimator is first
designed to infer the high-quality optical motion field (OMF)
from the time-varying light intensity. Then, the obtained OMF
is fed to an optic-to-inertia transformer, which leverages human
kinematics constraints in light ray projection to recover time-
sequential inertial data in a convolution-based process. Experi-
mental results show over 0.86 Pearson Correlation Coefficient
between reconstructed data via VisualAcc and ground truth
from authentic off-the-shelf MEMS sensors. Furthermore, we
conduct a case study on IMU inverse human dynamics analysis
to show VisualAcc’s potential in empowering and transforming
fine-grained wearable computing.

Index Terms—wearable computing; activities of daily life
monitoring; health data system

I. INTRODUCTION

Human activities of daily life (ADL) are a key indicator

of individual health status [1], [2] and have been applied to

different areas, including smart buildings [3], smart health [4],

and human-computer interaction [5]. Particularly, monitoring

human activity and behaviors in daily life is highly related to

life-critical applications, such as stroke rehabilitation tracking

[6] and heart disease prediction [7]. The marketplace of ADL

monitoring technologies is forecast to reach 2.6 billion by

2023 [8]. However, ADL data, the cornerstone of developing

various applications, is still lacking due to the humongous

efforts (e.g., building sensor systems, recruiting participants,

labeling, etc.) required in the data collection stage.

Numerous efforts have been made to address the data

starvation problem. Large datasets of human motion [9], [10]

were established to include as many activities and subjects as

possible. Multiple Inertial Measurement Unit (IMU) sensors

Fig. 1: VisualAcc facilitates the optic-to-inertia conversion

from harvested light-intensity data to authentic wearable ac-

celerometer data for effort-free wearable computing.

are used in datasets to cover various body areas. However,

the amount and diversity of data are still not satisfactory

for ever-emerging wearable computing applications, which is

in stark contrast to the massive datasets in other domains

(e.g., image, audio) that are far more diverse in terms of

scenarios and activities. The development of machine learning

in the past decade reveals an opportunity to use the Generative

Adversarial Network (GAN) for wearable data generation by

approximating the distribution of existing wearable data [11].

Nevertheless, GAN-created data is usually biased and it cannot

generate new labels in terms of demographics and scenes to

fulfill the demand of training data.

The recent success of vision-based human activity recog-

nition reveals that videos also carry rich motion data. More

importantly, as a device-free solution, camera has less obli-

gation for humans and is used everywhere. Thereby, it is

convenient to obtain diverse labeled data for training from

public video sources, such as Youtube [12] and TikTok [13].

Recent studies [14]–[16] envision a reconciliation between

vision and wearable computing methods, i.e., harvesting IMU

data from videos to train the model for the always-on wearable
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computing applications. Although these existing works have

achieved good performance in activity recognition, they com-

promise the authenticity of the harvested IMU data. Thereby,

the generated IMU data can not be used for life-critical

applications, such as post-traumatic rehabilitation [17] and

neural disease progress control [6]. Our work shares the vision

of these prior systems and aims to extract authentic inertial

motion data for the first time to facilitate the development of

fine-grained wearable computing.

In this study, we explore and unveil the opportunity of

extracting high-fidelity inertial motion from video optic in-

formation for wearable computing. Specifically, different light

rays are reflected as the subject changes position and orienta-

tion, resulting in sensible time-varying light intensity distribu-

tion, namely photometric effect. Therefore, with the accurate

modeling of the photometric effect and human locomotion,

authentic inertial motion information can be inferred from the

video optical variations. To achieve this goal, there are three

key technical challenges. 1) How to accurately interrogate

human motion with the modeling of photometric effect and

intensity variation, given the inevitable hinders such as illumi-

nation alteration and ambient occlusion? 2) How to extract and

reconstruct three-dimensional (3-D) inertial data of specific

human body areas using interrogated information? 3) How

to evaluate the system usability in wearable human activity

monitoring applications?

To this end, we present VisualAcc, an effort-free wearable

computing framework, to facilitate the optic-to-inertia conver-

sion from harvested light-intensity data to authentic wearable

motion data, as illustrated in Fig. 1. VisualAcc takes ordinal

optic data from camera optics sensors as the input, the pro-

cessing chain comprises of three steps. First, VisualAcc relates

intensity variation in optic data to optical motion via Horn and

Schunck’s theory [18], and optical motion reconstruction can

be formulated as an energy function minimization problem. To

address the challenges in optic data integrity and ambiguity,

we augment intensity patterns and estimate optical motions in

a two-stage fashion, i.e., formulating the condition-selective

energy function and initial Optical Motion Field (OMF) [19]

refinement. Second, an optic-to-inertia transformer is devel-

oped to track different components in OMF. We utilize the

kinematics constraints in light ray projection to reconstruct

time-series inertial data in a convolution-based process. Fi-

nally, the VisualAcc evaluation includes both publicly available

datasets and in-situ wearable computing. We comprehensively

examine the optic-to-inertia conversion in terms of fidelity,

integrity, and authenticity in three presentation levels, i.e.,

motion data, locomotion features, and real-world applications

(e.g., human activity recognition). Results show that the

Pearson Correlation Coefficient (PCC) between reconstructed

motion data and ground truth can achieve over 0.86. Also, an

activity recognition model using VisualAcc can reach above

92% accuracy on average. Furthermore, to demonstrate the

capability of VisualAcc in empowering fine-grained wearable

computing applications, a case study on multiple-IMU human

kinematics and dynamics analysis is conducted. These results

indicate that VisualAcc is a promising framework to empower

and transform wearable computing.

Our contribution in the work has three-fold:

• We are the first to explore the data conversion from the

optic domain to the inertia domain for wearable health

applications. We discover that the reflected light rays by

moving subjects can result in time-varying intensity in the

optic data, which can be leveraged to reconstruct inertial

motion data.

• We develop VisualAcc, an effort-free framework, to facil-

itate the optic-to-inertia conversion from harvested light-

intensity data to authentic wearable motion data for

wearable computing. We design a two-step optical motion

estimator to extract high-quality Optical Motion Field

(OMF) from light intensity variation. Then, a novel optic-

to-inertia transformer with kinematics prior knowledge is

proposed to reconstruct inertial data from the OMF.

• We conduct extensive experiments to evaluate VisualAcc
in both simulated and real-world scenarios. We demon-

strate that reconstructed motion data is close to the

data from off-the-shelf wearable MEMS sensors and can

facilitate real-world applications. A case study of us-

ing VisualAcc for fine-grained multi-IMU human inverse

kinematics and dynamics is investigated.

II. VisualAcc OVERVIEW

In this paper, we present VisualAcc, an optic-to-inertia

conversion paradigm. The overview is illustrated in Fig. 2,

consisting of two parts:

Photometric Effect based Interrogation: We design a pho-

tometric effect-based interrogation module to passively sense

the human motion under the influence of inevitable hinders.

Specifically, gradient augmentation is first applied to the

incoming optic data for strengthening the intensity pattern.

Then, VisualAcc establishes and solves a selective energy

function minimization problem to obtain the initial Optical

Motion Field (OMF). After that, an occlusion-resilient method

is developed to disambiguate the OMF further.

Optic-to-Inertia Transformer: The interrogated information

(i.e., OMF) is then fed to an Optic-to-Inertia transformer

for inertial data reconstruction. VisualAcc adopts a specifi-

cally designed transformer with prior knowledge of human

kinematics. This transformer first tracks the movement of

different human body areas-of-interest in the OMFs and then

cognizes the human kinematics constraints among them. The

following inertial data reconstructing module leverages the

tracked movement and the cognized constraints to recover the

3-D authentic inertial data. As the reconstruction is formulated

as an optimization problem, we specifically illustrate the data

flow for optimization in Fig. 2.

III. PHOTOMETRICS EFFECT BASED MOTION

INTERROGATION

In this section, we illustrate how VisualAcc passively inter-

rogates human motion with the model of photometric effect
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Fig. 2: The paradigm of VisualAcc. VisualAcc leverages device-free light intensity data to reconstruct wearable accelerometer

raw data via Photometric effect-based interrogation and human kinematrics enabled optic-to-inertia transformer.

and intensity variation, and get an Optical Motion Field (OMF)

as the output of interrogation.

A. Intensity Gradient Augmentation

The light intensity faces the attenuation problem in the

propagation process, which will compromise optic data in-

tegrity and the quality of the intensity pattern. To resolve

this problem, we augment intensity patterns. We adopt the

following enhanced isotropic Laplacian filtering to capture the

intensity gradient:

Δf =
∂2f

∂x2
+
∂2f

∂y2
=

∑
f(α, β)− 8f(x, y), (1)

where Δ is the Laplacian operator, f(x, y) is the gray-scale

function of the optic data, and (α, β) are the surrounding pixels

that satisfy ||(x − α, y − β)||2 = 1. Note that the enhanced

filtering includes the second derivatives on ±45◦ besides x and

y axis, which retain patterns in extra directions. The filtering

result is masked to the original pattern by:

I(x, y) = f(x, y) + c(Δf(x, y)), (2)

where I(x, y) is the augmented intensity value for each pixel

and c controls the strength of augmentation. The augmented

pattern I(x, y) is then fed to the next stage.

B. Optical Motion Field Inference

We use Horn and Schunck’s theory [18] to relate intensity

variation of optic signals to optical motion and infer OMF

via solving an energy minimization problem. This energy

minimization problem is usually formulated based on two

widely used constraints [18]: (1) intensity constancy con-
straint: the intensity remains unchanged when a pixel flows

from one frame to another; (2) smooth constraint: OMF varies

(piecewise) smoothly in the space. Considering illumination

changing cases in real-world scenarios, we further introduce

gradient constraint [20] as an optional replacement of intensity
constancy constraint, which enables switching between stable

illumination case and illumination alteration case.

The two-dimensional OMF is defined as w(m) =
(u(m), v(m))T , where m = (x, y) represents the pixel

in the intensity pattern. Based on intensity constancy con-
straint, we set a data penalty function as: ΓI(w,m) =‖
I2(m + w) − I1(m) ‖, where ‖ · ‖ represents L1 norm.

As for gradient constraint, the penalty function is given by:

Γ∇I(w,m) = κ ‖ ∇I2(m + w) − ∇I1(m) ‖, where ∇
is the discrete approximation of gradient operator, and κ is

a weight coefficient. To choose more fitting constraint for

different cases, we develop a selective data function as:

ED(w) =
∑
m

[η(m)ΓI(w,m)+(1−η(m))Γ∇I(w,m)], (3)

where η(m) is a binary weight map for switching between

two terms, denoted as η(m) : Z2 → {0, 1}.
For smooth constraint, we define smoothness penalty func-

tion as:

ES(w) =
∑
m

‖ ∇w(m) ‖ . (4)

The whole energy function can be given by:

E(w) = ED(w) + λES(w), (5)

where λ is a weight balancing the two terms.

To solve this energy function minimization problem, we use

the Mean Field (MF) approximation to avoid binary process

[21], then the whole energy function is transformed to:

Ê(w) =
∑
m

−1
ξ
ln(e−ξΓI(w,m) + e−ξΓ∇I(w,m)) + λES(w),

(6)

where we set ξ ≥ 1 to guarantee that minimizing Eq. (6) has

the same effect as minimizing Eq. (5) for OMF estimation.

Since Eq. (6) is non-convex, we first estimate potential OMF

candidates via scale-invariant feature transform (SIFT) [22]

detection and matching, and then apply an optimal combina-

tion method [23] to select the optimal ŵ(m) from candidates.

C. Optical Motion Field Disambiguation

Ambient occlusion is common in real-world scenarios that

may result in ambiguous OMF estimation. Thereby, we de-

velop an occlusion detection method to disambiguate the

initial OMF ŵ(m). We first identify the occlusion pixel by

examining if there exist multiple pixels mapping to the same

position between two frames. The number of pixels in frame

S1 mapping to the same target position in frame S2 is recorded
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as h(m). Then, we develop an occlusion confidence ζ(m) to

weaken the influence of occluded pixels, given by:

ζ(m) =

⎧⎪⎨
⎪⎩

1 h(m) ≤ 1,

2− h(m) 1 < h(m) < 2− θ,
θ h(m) ≥ 2− θ,

(7)

where θ is set as 0.05. Thereby, the whole energy function

will be updated as:

E(w) = ζ(m)ED(w) + λES(w). (8)

The minimization problem of Eq. (8) can be solved using con-

tinuous optimization via iteratively updating η̂(m) and w(m),
similar to [24]. η̂(m) is the MF-approximation of binary

weight η(m), given by [24]: η̂(m) = 1
1+eξ(ΓI(w,m)−Γ∇I(w,m)) .

The accurate w(m) can be finally obtained when convergence.

IV. OPTIC-TO-INERTIA TRANSFORMER

In this section, we need to solve the inertial data reconstruc-

tion problem. The problem is formulated as optimizing a trans-

former function ψ(wt) = at, where wt is OMF, at is inertial

data from MEMS accelerometer, and subscript t indicates the

time. However, finding a fixed closed-form ψ is an ill-posed

problem [25] due to the diversity of wearable computing ap-

plication scenarios. Considering wearable MEMS is attached

to the human body to measure the motion acceleration, we

manually designed ψ with prior human kinematics knowledge

by neural network components, whose advantages have been

proven in learning a complex mapping between data [26]. The

prior knowledge, as shown in Fig. 3, is that human motion

is constrained by the body posture and the status of different

body areas [27]. For example, the angle, as well as the muscle

strength of the body joint constrain the bending and twisting.

Also, the body skeleton keeps various anatomical features at

fixed distances from one another. These skeleton constraints

collapsed in a 2-D optical motion field limiting the inertia of

connected body areas. With this knowledge, we then elaborate

on the mechanism of ψ in the following subsections.

Fig. 3: Kinematics constraints applied to wearable MEMS.

A. MEMS Area-of-Interest Tracking

To understand and leverage the above constraints, we are

motivated to track different MEMS area-of-interest and ex-

tract their motion-related intimations in OMF. Moreover, as

the body moves and the posture changes, it is crucial and

challenging to continuously track these area-of-interests in

dynamic OMF, in which way we can narrow the potential

inertial data because the previous status of the human body

will influence the next status [28].

In VisualAcc, we pose temporal convolutional module.

Specifically, the first convolutional module in Fig. 4 takes T
adjacent motion fields W = {wt|t = 0, 1, · · · , T } as input

and calculates the n-th feature map F as:

F(x, y, t, n) =

J1∑

j1=0

J2∑

j2=0

J3∑

j3=0

Kn(j1, j2, j3)W(x−j1, y−j2, t−j3),
(9)

where J1, J2, and J3 are the sizes of convolution kernel

in height, width, and time, respectively, N is the number

of kernels and Kn is the n-th convolution kernel whose

parameters can be determined by optimization. Feature maps

can be regarded as the motion intimations of area-of-interest.

Note that the following convolutional modules take the output

of previous one instead of the original OMF and generate

more feature maps. This multiple-convolution design increases

the number of feature maps, which facilitates extracting fine-

grained time-varying motion intimations [29]. Moreover, it

enables the multi-scale capture of different area-of-interest

because the later module executes convolution on the spatial

down-sampled feature maps, i.e., larger-scale convolution.

Knowing these human motion intimations, kinematics con-

straint cognition for MEMS is then performed.

Fig. 4: Optic-to-Inertia Transformer Design.

B. MEMS-oriented Constraint Cognition

Although motion intimations of different area-of-interest are

tracked by convolution, leveraging those intimations to cognize

the kinematics constraints applied to wearable MEMS are

still challenging because the convolution operations are local.

Particularly, Eq. (9) shows that the unit in feature maps is the

weighted sum of its neighborhoods indicated by convolution

kernel size. Those neighbor units usually belong to the same

body area.

To cognize the collapsed constraints from those local feature

maps, we use the following non-local calculation [30] to take
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the intimation of each body area into consideration:

Ψ(x, y, t, n) =
∑

F̂∈∀F
exp(F(x, y, t, n)TKT

θ KjF̂)g(F̂),

(10)

where g is a linear transformation and Kj,Kθ are two em-

bedding kernels. The above equation captures the similarity

between every two feature map units, i.e., motion intimations,

in embedding spaces. By optimizing these two kernels, we are

able to find embedding spaces where the similarity between

two feature map units represents the constraints. Moreover, the

constraints in embedding spaces are not only spatial but also

temporary because the F̂ in Eq. (10) can be F(x, y, t+1, n) or

F(x, y, t−1, n), which are two examples providing intimations

from future and past.

C. Motion-Aware Inertia Reconstruction

In this part, we reconstruct the MEMS inertial data based on

the combination of intimations from area-of-interest and the

constraints among them. The combination can be formulated

as the following residual connection [31]:

C(x, y, t, n) = KzΨ(x, y, t, n) + F(x, y, t, n), (11)

where Kz is a linear embedding kernel. Typically, a fully

connected network is enough to decode the extracted in-

timations to 1-D or 2-D data. However, C is a temporo-

spatial combination, where temporary motion intimations are

extracted by convolution and non-local operations along the

time dimension. Therefore, Long-short Term Memory [32]

design is adopted in VisualAcc to perform motion-aware

reconstruction as

FoldR(CELL, [0, C(x, y, 0, n), · · · , C(x, y, T , n)]), (12)

where CELL is a function closure that takes (hidden state,

cell state) and a combination C, and returns (hidden state’,

cell state’). FoldR is a high-order function that can recursively

apply CELL on the combination list.

V. IMPLEMENTATION AND BENCHMARK

In this section, we introduce the VisualAcc implementation

and the benchmark preparation for evaluation and performance

metrics in wearable computing.

A. System Implementation

Software: We augment intensity pattern (see Section

III-A) via a 3 × 3 filter, which can be formulated as

[[−2,−2,−2]T , [−2, 32,−2]T , [−2,−2,−2]T ]. We build a

six-layer pyramid in an intensity pattern and estimate OMF

in each layer of the pyramid. Once the OMF at level l
is obtained, it is propagated to the next level l + 1, and

becomes an OMF candidate together with other candidates

estimated using SIFT feature detection and matching. After

the OMF disambiguation process, the finally obtained OMF

is represented as an RGB frame through the Hue-Saturation-

Value color space using a similar approach introduced in [33].

The Optic-to-Inertia Transformer is developed following the

parameter setting illustrated in Fig. 4 and the dropout rate

is set as 50%. We set a cost function as Mean-Square Error

(MSE) and adopt Stochastic Gradient Descent (SGD) as the

optimizer. The batch size we select is 64. The optimization

is performed on a workstation with Intel Xeon CPU E5-1620

and NVidia TITAN Xp GPUs.

Data Preparation: To evaluate the system performance, we

leverage the data from two distinct resources: 1) publicly

available database, i.e., Berkeley Multimodal Human Action

Database (MHAD) [9] in a controlled environment for train-

ing and testing the VisualAcc’s overall performance; 2) self-

collected data from a real-world environment for studying

the VisualAcc’s reliability (see Section VII-B in detail). Both

motion-caption sensors and wearable sensors are deployed in

validating the VisualAcc performance. In the MHAD dataset,

human motion is captured with two cameras. In the same

while, participants wear two wearable IMU units on the

left wrist and left hip, respectively. Three-axis accelerometer

sensors are integrated into the IMU units, working with the

sample rate at 30Hz. The clock in the camera and Shimmer

wearable sensors are synchronized for ease of comparison.

Nine subjects are enrolled for training. Each subject performs

four motion actions, and each action is repeated five times,

including jumping in place, jumping jacks, bending - hands up

all the way down, and sitting down then standing up (hereafter

A1, A2, A3, and A9, respectively).

Data Partition: We centrally crop the raw image and then

resize it to 256 × 256 pixels. We then leverage the nearest

interpolation to pair every frame image with the nearest

acceleration data record in time stamps, which forms 43097

image-acceleration pairs for the left wrist and 42950 image-

acceleration pairs for the left hip. We group every seven

adjacent pairs into a sample, and the overlapping between

samples is six pairs. Since every subject performs each activity

five times, we leverage the first four times for training, and the

last time for the test, resulting in 33558 training samples and

8459 test samples for the left wrist, 33558 training samples

and 8318 test samples for the left hip.

B. Performance Metrics

We are interested in measuring the fidelity, integrity, and

authenticity of the reconstructed inertial data by VisualAcc,

and investigating if these data can truly boost wearable com-

puting applications. Therefore, our evaluation is from three

perspectives:

1) Human Motion Data Fidelity. We evaluate the fidelity of

the reconstructed acceleration data compared to the accelerom-

eter readings (hereafter, ground truth) using two metrics.

Cross-correlation (XCorr) measures the similarity between

two signals with the following formulation:

(a � a′)[τ ] =
∞∑

j=−∞
a[j]a′[j + τ ], (13)

where τ represents the lag, a and a′ are ground truth

and reconstructed acceleration, respectively. In evaluation, we

compare XCorr (a � a′) with the Auto Correlation of ground
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truth (a � a, hereafter, ACorr). The high-fidelity reconstructed

acceleration would give a close XCorr to ACorr. Moreover, we

adopt Pearson product-moment correlation coefficient (PCC),
which is a measure of linear correlation between two signals,

to quantitatively evaluate the reconstructed acceleration:

r =

∑n
i=1(ai − ā)(a′i − ā′)√∑n

i=1(ai − ā)2
√∑n

i=1(a
′
i − ā′)2

, (14)

where ·̄ is the mean function. A high-fidelity reconstructed

acceleration would give r close to +1.

2) Locomotion Feature Integrity. Feature engineering is

widely adopted for analyzing inertial data since features de-

scribe the statistical characteristics of motions and decrease the

demand for computational resources for many classification-

based tasks, e.g., activity recognition. Therefore, we expect

the reconstructed acceleration to have integral locomotion

characteristics as the ground truth. Particularly, we adopt

Skewness, Kurtosis, and Interquartile Range (IQR), which are

practical locomotion features widely used in wearable motion

sensing [34], as the locomotion feature integrity metrics from

the kinematics perspective.

3) Activity Recognition Authenticity. The activity recogni-

tion accuracy (ARA) is to further evaluate the authenticity
of reconstructed acceleration from the application perspective.

Specifically, we train Random Forest models RFgnd and

RFrec on the ground truth and reconstructed data using the

aforementioned locomotion features, respectively. Two models

share the same setting: the number of contained decision trees

is 200; GINI function is used as a criterion; the random seed is

fixed as 2. We test two models on another independent ground

truth data set.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the overall performance of

VisualAcc for left wrist and left hip, respectively.

A. Accelerometer Raw Data Fidelity

The reconstructed acceleration and the corresponding ac-

celerometer readings of bending action are shown in Fig. 5.

The reconstructed data exhibits the same periodicity and pe-

riod length compared with the ground truth. In each period, the

local maximum and minimum of reconstructed acceleration

are close to that of the ground truth.

We further evaluate the fidelity of raw-acceleration data

via XCorr and PCC. As shown in Fig. 6, The XCorr curve

and ACorr curve are quite close. This indicates that the

reconstructed acceleration contains the same periodicity as the

ground truth. Also, we observe there is always a peak at lag=0

in these curves, and this peak in the XCorr curve is nearly

close to that in the ACorr curve. These results demonstrate that

the reconstructed acceleration confirms the same temporary

distribution as the ground truth. In addition, the PCC values

are all over 0.8, which shows a significant correlation between

the reconstructed data and the ground truth. In conclusion,

VisualAcc can reconstruct high-fidelity acceleration data.

Le  wrist-X

Le  wrist-Y

Le  wrist-Z

Le  hip-X

Le  hip-Y

Le  hip-Z

Fig. 5: The comparison between the acceleration data recon-

structed by VisualAcc and that collected from accelerometer

(ground truth) of bending action.

Le  wrist-X

Le  wrist-Y

PCC=0.86PCC=0.96

PCC=0.92 PCC=0.94

PCC=0.88 PCC=0.91
Le  wrist-Z

Le  hip-X

Le  hip-Y

Le  hip-Z

Fig. 6: Evaluation of raw data fidelity.

B. Locomotion Feature Integrity

To study the locomotion feature-level integrity of the recon-

structed data, we compare the skewness, kurtosis, and IQR of

the reconstructed acceleration with those of the ground truth.

For each action, we first segment the ground truth and recon-

structed acceleration data with a sliding window (length=24),

and then calculate these three features in each window. The

average values of these features over different actions are

illustrated in Fig. 7. We observe that the values of these fea-

tures vary from action to action on reconstructed acceleration,

which indicates the reconstructed acceleration carries distinct

locomotion characteristics. Moreover, the feature values of the

reconstructed data are similar to that of the ground truth on

each action, which shows that the reconstructed acceleration

reserves most of the locomotion characteristics existing in the

ground truth. Thus, we conclude VisualAcc can reconstruct

integral data from the kinematics view.
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Le  wrist-X

Le  wrist-Y

Le  wrist-Z

Le  hip-Z

Le  hip-Y

Le  hip-X

Fig. 7: The comparison of locomotion features among differ-

ent activities.

(a) Left wrist, mean accuracy are 94.1% and 93.6% for RFrec

(left) and RFgnd (right)

(b) Left hip, mean accuracy are 92.6% and 93.1% for RFrec

(left) and RFgnd (right)

Fig. 8: The comparison of activity recognition performance.

C. Authenticity in Activity Recognition

We leverage the aforementioned locomotion features to

evaluate ARA via RFgnd and RFrec models with the same

parameter settings (see Section V-B). RFgnd is trained on

439 samples (70%) from ground truth, and RFrec is trained

on the corresponding 439 samples from the reconstructed

acceleration. We use the remaining 188 samples from the

ground truth as an independent test set. The recognition

performance of both models are shown in the Fig. 8. RFrec

achieves the recognition accuracy of over 93% on the left wrist

and 88% on the left hip for all actions. Also, the recognition

accuracy of RFrec on each activity is close to those of RFgnd.

These results indicate that VisualAcc can reconstruct authentic

inertial data at the application level.

D. Model Understanding

Fig. 9: Visualization of the body areas’ contribution to the

reconstruction. (a-d): left wrist; (e-h): left hip.

The models of photometric effect and human locomotion

dominate the data reconstruction in VisualAcc. In this part, we

validate this domination from the physical perspective. The

key idea is to evaluate the contribution of different intensity

pattern regions (i.e., VisualAcc’s focus) to the inertial data re-

construction. We leverage Gradient-weighted Class Activation

Mapping (Grad-CAM) method [35] to evaluate the weight of

each body area’s intensity pattern and mask the weights to

the original frame as a heatmap, shown in Fig. 9. For the

reconstructed data of left wrist, Fig. 9 (a-d) show that the

VisualAcc correctly extracts motion-related intimations mainly

from the left forearm region, where the left wrist (red region)

contributes most. Besides, Fig. 9 (d) illustrates that the left

tibia region contributes a little to the reconstruction when the

subject sits down. This is consistent with the observation that

the subject’s left wrist applies a force to the left thigh when

sitting down, and the force propagates to the tibia. As for

the reconstructed data of left hip, we observe that VisualAcc
focuses on multiple body regions in Fig. 9 (e-h). The reason

is that the hip is a point connecting pelvis and thigh bones,

which propagates the force applied on the hip to both the upper

and lower parts of the human body. Evidently as exhibited,

the left hip area and lower back area (red region) make the

greatest contribution whatever actions the subjects perform. In

Fig. 9 (g), the left arm region (yellow region) is the second

focus of VisualAcc. It is because the arm’s movement can

constrain the forward-and-backward motion of the left hip

by changing the body center of gravity, thereby affecting

the acceleration estimation. Based on these observations and

analysis, we conclude that VisualAcc has learned the OMF

to an inertia mapping function. The above observation and

analysis validate the domination of photometric effect and

human locomotion models to VisualAcc.

VII. RELIABILITY STUDY

In this section, we investigate the VisualAcc’s reliability

against alien activities and different real-world environments.
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Fig. 10: The comparison of alien activity recognition perfor-

mance.

A. Impact of Alien Actions

VisualAcc should be applicable with various human activi-

ties due to the wearable computing requirements. Therefore,

it is necessary to investigate whether the VisualAcc can re-

construct reliable acceleration data of the target body area

from the optic data of actions unseen during the optimization.

Specifically, we select the optic data (from front view) and

corresponding accelerometer readings of the left wrist when

subjects 1-9 are performing the activities of punching (A4),

waving hands (A5), clapping hands (A7), and throwing a

ball (A8). The alien action recognition model is trained

with the same locomotion features and parameter setting as

mentioned in Section V. Specifically, we use 1044 samples

from reconstructed acceleration for training RFrec, and 1044

samples from corresponding ground truth for training RFgnd.

The remaining 448 samples from the ground truth are used to

test these two recognition models. As shown in Fig. 10, we

observe that the recognition accuracy of RFrec on each alien

action is close to that of RFgnd. Also, RFrec can achieve over

84% recognition accuracy over punching, waving hands, and

clapping hands. For throwing a ball, the recognition accuracy

of both RFrec and RFgnd are lower than 73%. The reason

is that the left wrist keeps almost static or moves slightly,

indicating that the left wrist is not ideal for ball throwing

recognition. In conclusion, the VisualAcc exhibits reliable

performance against alien actions.

B. Impact of Real-World Environment

Fig. 11: The PCC between reconstructed data and the ground

truth in four real-world scenarios. A shimmer is strapped to

subject’s left wrist for labeling the acceleration ground truth.

The real-world environment can introduce some daily-life

interference or various illumination conditions. Thereby, we

are curious about whether VisualAcc can be applied in real-

world scenarios.

To collect data from the real-world environment, we lever-

age the camera on iPhone 6s (4.15 mm focal length) to record

the video of activities from the front view of the subject,

with a frame rate of 30 Hz and an image resolution of

1280×720 pixels. A Shimmer is strapped to the subject’s left

wrist and captures the acceleration data (ground truth) with

the frequency of 30 Hz, as shown in Fig. 11. We recruit three

volunteers to perform the activities jump in place, jump jacks,

bending, and sit down and repeat five times in (1) a lab with

some desks and serves, with 354 lux; (2) a student lounge with

several people chatting, with 385 lux; (3) an empty parking

lot at 12 pm, with 1826 lux; (4) an empty parking lot at 7

pm, with 903 lux. The data partition method is the same as

we mentioned in Section V. Finally, we obtain approximately

14000 samples for each scenario.

For each action sequence, we calculate the PCC value

between the reconstructed acceleration and the ground truth.

Fig. 11 illustrates the average PCC values in every scenario.

We observe that the average PCC values are over 0.7 when the

experiments are conducted indoors. In the outdoor parking lot,

the PCC values are lower than that of the indoor environment

but still over 0.65. This is because the sharp shadow of subjects

caused by sunlight moves as the subjects move, which has a

similar shape to the subject to interfere with the transformer’s

tracking.

VIII. CASE STUDY: REAL-WORLD IMU INVERSE HUMAN

KINEMATICS AND DYNAMICS

This case study explores the potential of applying the

VisualAcc in real-world IMU-based inverse human kinematics

and dynamics [36], a fine-grained framework that estimates

human posture and force via multiple IMU sensors. Inverse

kinematics is an established tool for human body analysis.

For example, muscle fiber force can be estimated leveraging

multiple IMU sensors, thereby assessing the rehabilitation

from a movement disorder [17]. The main idea is to reconstruct

acceleration data for multiple IMU sensors via VisualAcc from

the recorded video of human motion. We solve the inverse

kinematics and dynamics problems with the reconstructed

IMU data and compare the results with those solved with the

IMU sensor data. As the problems use multiple IMU data

inputs, this case study can provide more insights of VisualAcc
on the data authenticity in the multi-IMU application context.

A. Method

Problem Statement: The IMU inverse human kinematics and

dynamics are problems that take inputs from multiple IMU

sensors and finally output the force of body parts of interest.

In detail, IMU-based inverse human kinematics is to find a

posture (i.e., the angles of joints) of the human model so that

the orientation error between the model IMU sensors and real-

world IMU sensors can be minimized. It can be formulated as

[37]:

min
q

∑
i∈IMUs

wiθ
2
i , (15)
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where q is the vector of generalized coordinates representing

the model posture, wi is the weight of i-th IMU sensor, and θi
is the error of orientation of the i-th IMU sensor. The following

inverse dynamics is to calculate the generalized force χ of

body parts via the posture q as [37]:

χ =M(q)q′′ + C(q, q′) +G(q), (16)

where M(·) is the mass matrix, C(·) is the vector of Coriolis

and centrifugal forces, G(·) is the vector of G-forces, q′′ and

q′ are the generalized velocities and accelerations.

Fig. 12: The human kinematic and dynamics model and the

placement of the two IMU sensors used in case study.

Data Preparation: The data we prepare is of right arm

motion. Three participants are recruited in the case study.

Two IMU sensors are attached to the right wrist and right

upper arm. We collect data from both accelerometers and

gyroscopes with a sampling rate of 30 Hz as the ground

truth. A camera (resolution is 1024×576) is placed in the right

front of the subject to provide the input for VisualAcc. Data

collection is done by a laptop so that the IMU data and camera

data are synchronized. During the data preparation, the three

participants perform random arm movement in the sagittal

plane so that more arm postures are covered. We collect five

minutes of data for each participant.

IMU Data Reconstruction: We start with the model we used

in Sec. VI. The data of the first four minutes are used for

training and transferring this pre-trained model to the right

arm IMU data generation. Then, we feed the camera data of

the last minute to the transferred VisualAcc to reconstruct the

IMU data.

Metrics: We solve the inverse kinematic and dynamics prob-

lems using the reconstructed and ground truth IMU data,

following the three setups detailed in TABLE I. We adopt

OpenSim [38] as our solver. Three dynamics metrics are used,

which are the Mean square error of normalized muscle fiber

length MSENMFL and fiber force MSEFF , respectively.

Setup A Setup B Ground Truth
Accelerometer 0 Data Reconstructed Reconstructed Ground Truth
Accelerometer 1 Data Ground Truth Reconstructed Ground Truth
Gyroscope Data Ground Truth Ground Truth Ground Truth

TABLE I: The setups to evaluate VisualAcc reconstruction’s

authenticity.

Fig. 13: The performance of inverse human kinematic and

dynamics facilitated by VisualAcc reconstructed IMU data.

B. Performance Results

We report the performance results on six different muscles,

which are Biceps brachii long head (BIClong), biceps brachii

short head (BICshort), brachioradialis (BRA), triceps brachii

lateralis (TRIlat), triceps brachii long head (TRIlong), triceps

brachii medialis (TRImed), respectively. Fig. 13 shows that

the muscle fiber length (typical value is less than 2) is

less impacted by the reconstructed IMU data compared with

fiber force (typical value is around 500). In addition, the

MSENMFL and MSEFF of muscle TRIlat and TRImed are

relatively less than that of other muscles. These observations

reveal that the data reconstructed by VisualAcc could be better

on specific applications related to triceps filer length. We also

observe that as the use of reconstructed data increases, both

error metrics also increase. However, the human kinematics

and dynamics problems are usually over-determined [39],

which implies that if more IMU sensors are reconstructed by

VisualAcc, the errors might be well controlled.

IX. RELATED WORK

Light-based Human Sensing: Light-based human sensing has

a long history. Zhou et al. proposed to apply light sensing

(photodiode) in hand gesture reconstruction [40] and human

skeleton posture sensing [41], [42]. Ma et al. [43] proposed to

use solar panel as a light sensor for gesture recognition. In the

biomedical area, light-based respiration [44] and heart rate [45]

monitoring (Photoplethysmographic, PPG) is widely adopted.

Some researchers also explored human motion sensing with

infrared light [46], [47]. Different from those works, VisualAcc
is the first photometric effect-based framework to sense com-

plex human motion and reconstruct fine-grained inertial data,

with the models of photometric effect and human locomotion.

Data Boosting and Generation: Data boosting and generation

is an emerging topic in wearable computing. Many works

generate new data by transferring harvested information in

prior studies. For example, motion studies [48], [49] tried

to generate full-body motion data via computer models of

the muscle and joint. However, due to the complexity and

individuality of the human body, several practices [50], [51]

have approved that generated data usually far differ from real-

world data. Other works leverage the fast development of

neural networks for data boosting and generation. For example,
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generative adversarial models (GAN) [11] as one type of

neural network that can create new data via approximating

the real data distribution are the primary tools used in this

field. However, GAN-created data is usually biased because

the discriminator that helps improve data quality does not

carry any kinematics knowledge [52]. Different from these

works, VisualAcc bridges data-rich and device-free camera

repositories to wearable computing, boosting authentic data

for wearable computing.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose VisualAcc, an optic-to-inertia

framework to facilitate effort-free wearable computing for hu-

man activities of daily life. We explore the principled connec-

tion between harvested light-intensity data and authentic wear-

able motion data, with the models of photometric effect and

human locomotion. Based on our exploration, we develop a

photometric effect-based human motion interrogation module

to extract high-quality optical motion field from light intensity

variation. Then, we design an optic-to-inertia transformer with

prior human kinematics knowledge to reconstruct the inertial

data. This transformer consists of three modules: MEMS area-

of-interest tracking, MEMS-oriented constraint cognition, and

motion-aware reconstruction. The extensive evaluation and

real-world case study show the potential of VisualAcc to

empower effort-free wearable computing.

VisualAcc extends the scope of wearable computing applica-

tion to more scenarios. For example, VisualAcc can be applied

to generate more inertial data for researchers to analyze

workers’ awkward postures, improving occupational safety.

Besides, VisualAcc is able to provide in-situ analytics for

athletes during professional sports games, where the wearable

devices are not easy to deploy. In future work, we plan

to evaluate VisualAcc using gyroscope data and improve its

performance in the cases of deep shadow.
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