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Abstract—As mobile technology grows rapidly, the smartphone
has become indispensable for transmitting private user data, stor-
ing the sensitive corporate files, and conducting secure payment
transactions. However, with mobile security research lagging,
smartphones are extremely vulnerable to unauthenticated access.
In this paper, we present, EyeVeri, a novel eye-movement-based
authentication system for smartphone security protection. Specif-
ically, EyeVeri tracks human eye movement through the built-
in front camera and applies the signal processing and pattern
matching techniques to explore volitional and non-volitional gaze
patterns for access authentication. Through a comprehensive user
study, EyeVeri performs well and is a promising approach for
smartphone user authentication. We also discuss the evaluation
results in-depth and analyze opportunities for future work.

I. INTRODUCTION

Smartphones have overtaken personal computers (PC) and
become the most prevalent devices for communications and
computing services [1] in daily life. By 2015, there were
1.5 billion smartphones in use globally [2]. In contrast, the
mobile security for access control and data privacy has been
overlooked when compared to PC security and severely lags
behind in spite of the ubiquitous nature of smartphones. It is
not surprising that smartphone users experience more unau-
thenticated access than PC users as reported in [3], because
smartphones intrinsically tend to have higher risk of loss or
theft [4].

Until recently, biometrics-based authentication has attracted
more attentions and becomes an alternative to traditional
authentication methods like passwords or PINs. In general, it
can be categorized as two types: Physiological and Behavioral
Biometrics.

Physiological biometrics include fingerprint [5], facial
recognition [6], speech analysis [7], [8], and iris scans [7], [8].
These methods require users to pass the biometric verification
in order to obtain the access authority to smartphones. The
potential risk is that most of these bio-features can possibly be
obtained or replicated by adversaries. For example, fingerprint
can be stolen and voice pattern can be counterfeited by
professional software. Even some facial recognition systems
can be fooled by an appropriately sized photo of a legitimate
user. Behavioral biometrics are based on the way people do
things. In the past few years, researchers have explored various
touch-based behavioral cues to provide security protection on
smartphones such as keystroke patterns [9] and touch gestures
[10]. However, these methods require interaction with the
screen pad, which means that the “password” can be threatened

by shoulder-surfing. Other methods such as gait patterns [11]
and in-air signatures [12] need obtrusive interaction with
smartphones and are still possible for adversaries to mimic. In
conclusion, a secure biometric can not be explicitly obtainable
in public or based on easy-controllable body component.

Human eye movement is driven by the complex interaction
network between brainstem control and extraocular muscles
via neurological components [13]. Due to the fact that it com-
piles both physiological and behavioral aspects in nature and
has miniature scale, human eye movement is highly immune
to the accurate replication by the adversaries. In this paper, we
present EyeVeri, a novel authentication system for smartphones
based on eye movement. It captures human eye movements
(i.e., fixations and saccades) and extracts a unique gaze pattern
for access authentication. Firstly, eye-movement pattern is
related to eye bio-structure and each individual has a unique
extraocular muscle condition. Specific eye structure or muscle-
related features such as range of view or eye-movement speed
are highly individual-dependent. Secondly, eye movements
usually take place in response to specific mental processes of
human beings. Studies have discovered the close relationship
between eye behaviors and human emotions [14] and the Eye-
Mind Hypothesis states that there is a direct correspondence
between a person’s gaze and attention. Therefore, individuals
hold unique eye-behavioral features in eye movements because
of their different experiences and habits.

Fig. 1: EyeVeri flowchart illustrates the whole process from the
time when an unknown user requests to enter the smartphone
to the time that the system makes a final decision.

In our work, we develop an authentication system (Fig.
1) and implement the eye-tracking module on an android
smartphone. Generally, eye movement can be categorized into
volitional and non-volitional movement. Volitional movement
is when people scan objects on their initiative and non-
volitional one is when people passively observe objects. We
design and examine four types of visual stimuli to stimulate
various eye-related physiological and behavioral features. We
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comprehensively evaluate the system performance, mainly
from three aspects: accuracy, efficiency as well as long-term
stability. Our system can achieve accuracy of around 88%
during the experiments, as well as sufficient time efficiency
(5 ∼ 10 seconds) and long-term stability (around 5% fluctu-
ation). Our study proves the concept of smartphone authen-
tication based on eye movement is feasible and promising.
Generally, EyeVeri has the following main advantages as an
authentication approach: 1) Secure: it enables the user to avoid
conspicuous interaction with the smartphones and against
shoulder-surfing or smudge traces; 2) Unique: it stimulates
the highly individual-dependent features of extraocular bio-
structure and eye-movement behaviors; 3) Constant: it obtains
a fairly stable performance as shown in our long-term study,
which enhances its feasibility. To the best of our knowledge,
this is the first work to explore both volitional and non-
volitional eye movement as a biometrics on the smarphone.

Our main contributions can be summarized into three-fold:
• We propose and implement an end-to-end authentication

system based on eye movement on the smartphone with-
out any extra hardware;

• We explore a set of visual stimuli which can stimulate
eye-movement features from different aspects and show
the promising result of applying non-volitional eye re-
sponse as a biometrics;

• We perform a complete and intensive user study to un-
derstand in-depth the system performance and limitation.

II. BACKGROUND

A. Related Work of Smartphone Authentication

Authentication methods applying eye-tracking technology
have been investigated. Luca et al. [15] presented an au-
thentication mechanism based on eye gesture to eliminate the
physical contact-type on the public terminals. It enabled users
to invoke commands by moving their eyes in a pre-defined
pattern. The user’s eye movements were categorized into eight
strokes. Dachuan et al. [16] proposed a new eye-tracking
method for smartphone authentication. Objects with different
numbers randomly moved on the screen. By matching the
user’s eye-movement trajectories with the objects’, the system
determined the actual number the user was looking at. Note
that the main principle of these works (including [17] [18])
is to utilize eye movement as an alternative input method to
pointing-based interaction, instead of exploring the biometric
characteristic it contains.

Single or multiple finger-touch based smartphone authen-
tication methods have been explored [19][10][20]. Shahzad
et al. [21] designed a set of sliding gestures performed by
single or multiple fingers. They trained a model based on
the behavioral-related features extracted from user’s gestures.
The result showed an average equal error rate of 0.5% with 3
gestures using 25 training samples for each gesture.

Other biometrics have also been studied. Das et al. [22]
proposed an autobiographical authentication method based
on people’s own daily memories. They built a challenge-
response authentication system that queries users about the

daily experiences the system recorded. Schneegass et al. [23]
presented an enhanced authentication system that applies ran-
dom geometric image transformations to increase the security
of cued-recall graphical passwords against smudge trace. They
applied transformations such as rotation, scaling shearing and
flipping to the image before the user input the password
pattern. However, this method is vulnerable to threats such
as shoulder surfing. Nickel et al. [24] carried out smartphone
authentication research based on the way people walk. The
gait biometric data was collected through the accelerometer
by attaching the smartphone to a specific body part. Based
on the feature extraction and k-NN algorithm, they achieved
a low EER of around 8%. The authentication was conducted
based on 30 seconds of walking data.

B. Human Vision and Eye Movement

The human visual system is mainly composed of the oculo-
motor plant and brainstem control [25]. The oculomotor plant
primarily comprises the eye globe, surrounding tissue, and the
extraocular muscles. The extraocular muscles can be catego-
rized into the lateral and medial recti, the superior and inferior
recti, as well as the superior and inferior obliques. The human
brain controls the extraocular muscles with burst/omnipause
neurons, causing muscle contractions and relaxations [26].

Various human eye movements are highly related to the
neuronal signals [27]. Among these different types, fixations
and saccades are of particular interest to the researches.
Fixations occur when the eyes focus on a specific point such
that the fovea remains centered on the object to ensure the
visual acuity. Saccades are the rapid movements of the eye
between two fixations, with very little visual acuity maintained
during rotation [26]. The scanpath is the spatial path generated
by the fixations and the saccades. Under the same condition, it
is almost impossible for two individuals to achieve the same
scanpath since no two persons are exactly the same in the
bio-structure. Based on existing eye-movement theories [27],
it provides a potential way to distinguish individuals with
specific eye-behavioral patterns.

Eye-movement biometrics for human identification were
initially investigated by Kasprowski and Ober [28]. They
performed personal identification based on eye movement
characteristics, using specific eye-tracking equipment. The
experiments proved the possibility of identifying people with
this unique bio-feature. Bednarik et al. [29] presented a case
study investigating the potentials of eye-movement data for
biometric purposes. The results indicated that eye-movements
and gaze features contain the discriminatory information be-
tween individuals. Later on, Komogortsev et al. carried out
intensive studies [30][31][32] on eye-movement-based human
identification, including the effects of eye stimulus types and
movement patterns on the accuracy of biometric verification.
The results verified that certain feature extractions of fixations
and saccades are able to accurately distinguish individuals.

Even though eye movement contains so many unique fea-
tures of individuals, to the best of our knowledge, so far there



is no work to explore them in smartphone user authentication,
especially non-volitional eye movement.

III. EyeVeri

A. System Overview

The overall framework of EyeVeri is shown in Fig. 2,
which comprises three modules: (1) Visual Stimuli Design,
(2) Eye-tracking System and (3) Authentication Processing.
When someone attempts to gain access to a smartphone, the
pre-designed visual stimuli are shown on the screen. The
eye-tracking system that runs in the platform background
simultaneously captures the eye movement of the subject and
records the position information of the focus point. After the
user’s data are recorded, certain features are extracted from the
data and a classifier based on the pre-stored owner template
processes the in-coming data to determine whether the user is
the owner or not.

B. Visual Stimuli Design

(a) Fruit-Row (FR); (b) Corner-Gif (CG);

(c) Illusion-Image (II); (d) Simple-Dot (SD).

Fig. 3: Four different types of visual stimuli.

In Fig. 3, we design four visual stimuli for different
eye-related features, which are Fruit-Row (active scanning),
Corner-Gif (passive following), Illusion-Image (strong stimu-
lation) and Simple-Dot (weak stimulation). For the simplicity
of presentation, we use abbreviations FR, CG, II and SD for
each of them in the rest of the paper. FR (Fig. 3(a)) contains a
fruit sequence in a row and the subject actively scans through
the sequence from left to right at his/her own habit. There
is no restriction in both time and manner. CG (Fig. 3(b))
includes a gif where a black circle rotates through the four
corners in a clockwise way. The subject needs to exactly
follow the black circle during the authentication process. II (
Fig. 3(d)) is a typical illusion image that can strongly stimulate
the unconscious vibration (saccade) of the eyeball. Lastly, SD

(Fig. 3(c)) has a simple dot positioned in the middle of the
screen and the subject also needs to stare at the dot during
the process. When watching these stimuli, the subject should
keep head movement to a minimum relative to the position of
the face and the smartphone.

From the perspective of the design purpose, each type of
visual stimuli contains the disparate information that we are
interested in. FR reflects the volitional eye response and highly
depends on the reading or scanning pattern and personal favor
with regard to the specific fruit type in the sequence. For
example, some people have faster scan speed and may spend
more time on favored objects. The remaining three types
stimulate non-volitional eye response. CG contains a large
amount of information about the bio-structure of the eye and
the angular size of the subject which is unique in everyone.
Both II and SD tend to stimulate the unconscious eye vibration
of the individual. Compared with SD, II is prone to excite
eyeball vibration and augment personal uniqueness.

C. Eye-tracking System

The eye-tracking system mainly involves two steps: Facial
Info Processing and Gaze-angle Calculation. Specifically, Fa-
cial Info Processing extracts spatial information of the eyes
from the camera preview. Gaze-angle Calculation computes
the spatial angles related to the gaze point.

1) Facial Info Processing: This step is to achieve positional
information of the eyeball and iris. Based on the camera pre-
view image, the system first detects the face position using the
Six-Segmented Rectangular (SSR) filter [33]. After obtaining
the face position info, the accurate location of both eyes are
extracted based on the eye’s regions of interest (ROI) on the
image, using a shape-based approach. Then edge detection
techniques such as Hough transform are used to effectively
figure out the iris contours [34]. The iris contour is nearly
a circle which lays on the surface of the eyeball, and the
projection of the iris contour on the camera image is an ellipse
while the gaze is deviated. Some parts of the iris contour
are shadowed by the eyelid. Therefore, the ellipse fitting is
implemented to achieve accurate iris contours.

2) Gaze-angle Calculation: The eyeball model [35] is
assumed to be a sphere and the iris lays on the surface of
the eyeball. The optical/visual axis (we presume they coincide
with each other) of the eye is the line passing through the
center of the eyeball and the center of the iris. The anatomical
axis of the eye is the line passing through the center of the
eye ball and is normal to the screen plane. The angle between
these two axes is defined as the eye gaze. While changing the
eye gaze, the eyeball rotates around its center. The radius of
the iris is modeled to be a constant, even though it varies a
little bit among users. The two angles that we need to estimate
the position of the gaze point are the horizontal and vertical
angle, which lay in a gaze-horizontal and gaze-vertical plane,
respectively. Gaze-horizontal plane is the spatial plane that
passes the horizontal lane of the gaze point and the center
of the eyeball. The horizontal angle is between the optical
axis and the anatormical axis in the gaze-horizontal plane.



Fig. 2: The proposed smartphone authentication framework based on unobtrusive eye-movement, which comprises three
modules: (1) Visual Stimuli Design; (2) Eye-tracking System; (3) Authentication Processing.

Similarly, the vertical angle is between the optical axis and the
anatormical axis in the gaze-vertical plane. The two angles are
directly related to the gaze point on screen. In this work, we
use available techniques [36] to implement our eye-tracking
system on the smartphone.

D. Authentication Processing

After the gaze data are collected, the authentication process
is conducted to verify if the user is the legitimate owner.

1) Feature Extraction: We propose and develop a set of
eye-movement features which contain physiological and be-
havioral information. The features and corresponding defini-
tions are listed in Table I. Specifically, we categorize them into
three groups, based on the main information they contain.

• Physiological Info.: Max. and Min. of the gaze angles
in coordinates depend on the view angle, which contains
the typically physiological features of the eye. Max. angle
value refers to the rightmost point (horizontally) or the
topmost point (vertically) a subject can reach. Similarly,
Min. angle value means the leftmost point (horizontally)
or the bottommost point (vertically) of a person’s view.

• Behavioral Info.: STD as well as RMS represent the dis-
tribution of the scan area in coordinates, which are related
to eye behavior. Skewness and Kurtosis are behavioral-
based features. Skewness is a measure of the asymmetry
degree and may has limited contribution in a specific di-
rection because of the symmetry layout of visual stimulus,
such as CG or FR. Kurtosis is a measure of whether the
signal is peaked or flat relative to the normal distribution.
Iqr. describes the signal statistical dispersion. Both ZC
and MC reflect the shift frequency of the eye movement,
which are mainly behavior-related. Corr. between two
coordinates helps differentiate movements that involve
translation in single dimension from the ones that involve
translation in multi-dimension. CG involves one direction
movement in each step. The related movement for FR is
also most likely in one direction since the fruit sequence
is in a row. However for SD and II, Corr. may have
limited effect in that the unconscious vibrations are multi-
direction.

• Physiological & Behavioral Info.: Mean and Median
can indicate the general focusing area of the eye on the
screen, which contain both aspects. N -order Derivatives
are associated with how quickly the eye moves in coor-
dinates, which are also determined by the muscle feature
of the eye. Therefore, both physiological and behavioral
information are involved.

Note that all features except Corr. are independently applied
on horizontal and vertical angles. Therefore we will eventually
have 27 features in total.

2) Authentication Algorithm: Authentication is intrinsically
a one-class classification problem which differentiates between
data that appear normal and abnormal with respect to the
distribution of the training data. The main challenge is to find
an appropriate distribution for the data and the performance of
the model is high related to the locality and completeness of
the data. As a result, it is widely reformulated into a two-
class classification problem in the biometric authentication
field [20], [37]. Initially, the owner’s templates are stored
in the smartphone. When an access request occurs, the gaze
data from the unknown user are collected. For evaluation
proposes, we employ support vector machines (SVM) as our
classifier. More specifically, we use the Sequential Minimal
Optimization implementation of SVM which is provided in
the Weka machine learning toolkit [38]. Gaussian radial basis
function is selected as the kernel function to map the original
data to a higher dimensional space.

IV. SYSTEM EVALUATION

In order to evaluate the system in a comprehensive way, we
focus on four main aspects: system accuracy, time efficiency,
long-term performance and feature dimension reduction.

We develop the system on Google Nexus 4 with a quad-core
CPU of 1.5GHz and a screen size of 4.7 inches. The visual
stimuli we use are CG, FR, II and SD. The sampling rate of
the eye tracking module is 5Hz, which means there are 50
data samples in 10sec.

A. Evaluation of System Accuracy

A key concern to the feasibility and effectiveness of an
authentication system is quantification of the degree to which



No. Feature List Feature Definition Main Contained Info.
1 Maximum (Max.) The maximum value of the signal over the window Physiological
2 Minimum (Min.) The minimum value of the signal over the window Physiological
3 Standard Deviation (STD) The measurement of the distribution of the signal Behavioral
4 Root Mean Square (RMS) The quadratic mean value of the signal Behavioral
5 Skewness The degree of asymmetry of the signal distribution Behavioral
6 Kurtosis The degree of peakedness of the signal distribution Behavioral
7 Interquartile Range (Iqr.) The difference between 75th & 25th percentiles of the signal over the window Behavioral
8 Zero Crossing Rate (ZCR) # of changes between positive & negative Behavioral
9 Mean Crossing Rate (MCR) # of changes between below mean & above mean Behavioral
10 Pairwise Correlation (Corr.) Correlation between the horizontal & vertical signals Behavioral
11 Arithmetic Mean (Mean) The average value of the signal Physiological & Behavioral
12 Median The median value of the signal Physiological & Behavioral
13 Mean 1st Derivatives The average of 1st order derivatives over the window Physiological & Behavioral
14 Mean 2nd Derivatives The average of 2nd order derivatives over the window Physiological & Behavioral

TABLE I: Extracted features and their definitions, as well as the main information each of them contains.

it can accurately recognize the owner and reject adversaries.

1) Evaluation Descriptions: We recruit a total of 20 par-
ticipants (3 females and 17 males) in our experiment. Among
them, 5 use glasses while the others do not. Their ages are in
the range of 25-35. After we train the SVM classifier based on
the validation set, the 10-folder cross-validation is conducted
to give insight to the overall performance of the classifier.

We refer to one trial as the subject watches four visual
stimuli one after each other. Each subject repeats 10 trials
in the experiment. Therefore, each subject eventually has 40
collected data (10 for each visual stimulus respectively) and
in total we have 800 sample data.

2) Single-user Application Scenario: Considering the s-
martphone is owned by one individual, we evaluate the sys-
tem in the single-user, multi-attackers scenario. The attacker
scenario is simulated where the owner loses the smartphone
and unknown people attempt to enter the smartphone. Each
of the 20 subjects is selected exactly once as the owner and
remaining subjects’ data are used as the adversaries to attack
the system. For the two-classification module, we label the
owner’s data as the positive class, while all other subjects’
data (except the one from the attacker) as the negative class.
Based on the 10-folder cross-validation, the data set in each
class will be randomly divided into the training set and test
set. The owner’s test set is also included since it will not make
sense if the training model rejects all the data.

3) Evaluation Results:

a) Balanced Accuracy Metric: The most straightforward
and widely used accuracy metric is defined as:

Accuracy(%) =
TP + TN

TP + FP + TN + FN
∗ 100%, (1)

where TP is the true positive, TN is the true negative, FP
is the false positive and FN is the false negative. However,
this metric can be misleading when the true class distribution
is unbalanced. In our case, the sample ratio of the positive
class and the negative class is 1:19, which means that we
can still have an accuracy as high as 95% even if the model
naively predicts all the test data as negative (rejects all the
users including the owner and has no practical meaning). In

our work, we adopt the balanced accuracy metric (BAC), given
its advantage of non-sensitivity to class distribution:

BAC(%) =
0.5 ∗ TP
TP + FN

+
0.5 ∗ TN
TN + FP

. (2)

Fig. 4: The average BAC of 20 subjects for four visual stimuli.
The error-bars are the STDs of BAC among the subjects.

Fig. 4 shows the average BAC of 20 subjects for four
visual stimuli. CG achieves the best accuracy of 88.73%, with
the standard deviation (STD) of 3.04%. FR obtains a close
accuracy of 85.57%, with the STD of 3.12%. The results prove
that the related bio-info (such as angular size) in CG as well as
the eye-behavior pattern (such as scan speed) in FR are heavily
individual-dependent and are able to distinguish different
people. II and SD have the accuracy results of 80.05% and
78.15% respectively. These two images intend to discover the
unconscious eye vibration pattern of the individual. However,
II more easily stimulates unconscious eye vibration while the
corresponding response time varies for SD. In other words,
data in II contain more eye vibration information than SD
during the experiment. Therefore, it achieves better accuracy.

Moreover, it is worth mentioning that the worst case of
CG (85.69%) still performs better than the best cases of II
(82.09%) and SD (83.46%). The worst case of FR (82.45%)
has close performance with the best cases of II and SD.

b) Receiver operating characteristic (ROC): To take a
closer look at the system accuracy under different setups,
we investigate ROC curves among four visual stimuli in the
study. ROC curve is an effective way to graphically reflect
and compare the performance of the classifiers among different



Fig. 5: The average ROC curves of 20 subjects for four visual
stimuli. The vertical dashed line in orange implies a 10%
threshold of false positive rate.

classification setups. The true positive rate (TPR) and the false
positive rate (FPR) are traded off against each other. If the
classification is carried out in a strict setup, both TPR and FPR
can be extremely low, which means attackers will be rejected
as well as the owner. At the cost of wrongly accepting some
attackers, the classifier is less sensitive with reasonable TPR.

Fig. 5 displays the ROC curves of four visual stimuli, based
on the average result of 20 subjects. The AUCs (the area
under the curve) are 96.74%, 95.38%, 93.62% and 90.11%,
respectively for CG, FR, II and SD. The performance of CG
and FR is quite similar and their curves cross a little bit with
each other over different setups. They are all better than II and
SD because both curves are completely above the ones of II
and SD, which is in accordance with our previous discussion.
If we setup a false positive threshold of 10%, TPR of CG and
FR achieves around 85% accuracy, while that of II and SD is
approximately 80% and 75%, respectively.

Fig. 6: Equal error rate (EER) of four visual stimuli. The error-
bars are the STDs of EER among 20 subjects.

c) Equal Error Rate (EER): In order to account for the
usability-security trade-off, we report EER, which is at the
sensitivity of the classifier where FPR and FNR are equal.
Fig. 6 depicts the outcomes of EER of four visual stimuli.
The error-bars represent the STD of EER among 20 subjects.
CG and FR have the similar EER of 10.61% and 11.24%.
The corresponding small STDs, 3.06% and 3.41%, suggest

the universality of these two types of authentication upon the
subject group. II has a 14.48% EER with a STD of 4.73%,
while SD has a 17.71% EER with a STD of 5.34%. The
relatively high EER and STD for SD implies that it is not
as distinguishable and stable as the other three visual stimuli.

B. Evaluation of Time Efficiency

Time efficiency is another important metric, especially for
resource-constrained smartphones. An effective authentication
system is supposed to not only correctly recognize valid access
requests, but also efficiently make the authentication decision.

1) Evaluation Descriptions: To evaluate time efficiency, we
apply different time restrictions on the visual stimuli. Since FR
is designed with the principle of no constraint in manner or
time, it will not be included in this evaluation. For the other
three visual stimuli, 20 subjects repeat the same experiment
process as is described in the preview section, but with four
different duration setups: 3sec, 5sec, 7sec and 10sec. Note
that for CG, the different authentication durations result in the
different stay time of the circle in the corners.

Fig. 7: The average BAC of visual stimuli under different
authentication durations. The error bars are the STD of the
accuracy results among 20 subjects in the corresponding
authentication duration.1

Dur. CG Acc. Growth II Acc. Growth SD Acc. Growth
3sec 73.56% - 65.36% - 65.89% -
5sec 84.63% 15.04% 75.65% 15.74% 72.16% 9.51%
7sec 86.02% 1.64% 78.02% 3.13% 74.34% 3.02%
10sec 88.73% 3.15% 80.05% 2.60% 78.15% 5.13%

TABLE II: The BAC and growth rate of 3 visual stimuli under
different authentication durations. (Growth: The growth rate
is calculated by the accuracy in the current duration and the
previous duration.)

2) Evaluation Results: The average BAC results of three
visual stimuli with different authentication durations are illus-
trated in Fig. 7 and the statistical results are summarized in
Table II. Collectively, they provide the trade-off information
between the accuracy and the duration of the three visual
stimuli. We can see that the authentication duration of 3sec
is too short for a reliable result for all visual stimuli, with
expected low average accuracy, as well as high STDs (10.81%
for CG, 12.85% for II and 14.97% for SD). The BAC results

1The difference in horizontal is for the purpose of illustration.



of three visual stimuli are all significantly improved when
the duration increases from 3sec to 5sec. Specifically, the
performances of CG, II and SD are improved by 15.04%,
15.74% and 9.51%. The corresponding STDs are also reduced
to 5.82%, 8.12% and 10.53%, respectively. Also, there are no
significant improvements when the time increases from 5sec
to 7sec. However, when the duration increases from 7sec to
10sec, the performances will gently increase by 3.15%, 2.60%
and 5.13%, for CG, II and SD respectively. More importantly,
the STDs of three visual stimuli are dropped to 3.04%, 2.04%
and 5.31%. Generally speaking, for three visual stimuli, the
longer the duration, the better the accuracy result. Regarding
the growth rate, the duration of 5sec seems to be a significant
turning point. When the STD is concerned, the duration of
10sec is the best choice.

C. Evaluation of Long-term Performance

Long-term performance is a critical aspect in the authen-
tication system. On one hand, in the continuously repetitive
experiment, the subjects tend to develop the fix behavior pat-
tern due to short-term memory. The short-term memory may
bias the evaluation results, either positively or negatively. On
the other hand, some bio-features as well as human behaviors
may slightly change over time. Therefore, the evaluation of
long-term performance is necessary for practical use.

1) Evaluation Descriptions: In total, three participants (1
female and 2 males) are involved in this two-month evaluation.
The average age of the participants is 28 years old. Only 1
male wears glasses. Particularly, the evaluation has two phases
for the test.

Enrollment Phase: We define each trial as a continuous
experiment of four visual stimuli. In order to reduce the
effect of short-term memory, four visual stimuli are displayed
in a random order. The duration of authentication is set as
10sec in our study. Initially, each subject finishes 10-trial
data collection events with a 20-minute break between each
two. The collected data are regarded as the templates of the
corresponding owners and are used to train the models for the
later authentication test.

Authentication Phase: After the classifiers are trained, the
long-term authentication phrase is carried out in the following
two months. Every day, each subject acts as the owner in turn,
while the other two act as the attackers. We define a test round
as when a specific subject is selected as the owner. We have 3
test rounds in each day. In each round, 10 trials of the owner
and 20 trials of the attackers are performed.

Type Short-term Acc. Long-term Acc. Changes
Corner-Gif (CG) 88.73% 85.18% -4.00%
Fruit-Row (FR) 85.57% 81.56% -4.69%

Illusion-Image (II) 80.07% 68.39% -14.59%
Simple-Dot (SD) 78.15% 67.95% -13.05%

TABLE III: The system performance comparison between the
short-term study and long-term study.

2) Evaluation Results: The average BAC of the subject
group for each visual stimulus in each day is illustrated in

(a) The performance gradually
decreases with time.

(b) The performance when av-
eraging 10 days’ results.

Fig. 8: The long-term performance results of four visual
stimuli.

Fig. 8(a). The system performance comparison between the
short-term study and long-term study is summarized in Table
III. During the two-month test, the performance of CG and
FR is relatively stable, and has no significant descending or
ascending tendency. Specifically, CG achieves 85.18% BAC,
with a STD of 3.41%. FR obtains 81.56% BAC, with a STD of
5.36%. Compared with the short-term results in the accuracy
evaluation, accuracy drops by 4.00% and 4.69%, respectively.
This result is expected since the bio-structure of eyeballs and
the eye-behavior pattern are hard to change in a short period.

II has 68.39% BAC, with a STD of 4.89%. SD results
in 67.95% BAC, with a STD of 6.13%. After 30 days, the
accuracy dramatically drops in both by 14.59% and 13.05%.
Note that the large drops in both cases are all due to the
decrease in TP, which means that after a certain period, the
smartphone may reject the access request from the owner.

We divide 60 days into 6 time intervals, with 10 days in
each, to better visualize the trend. As depicted in Fig. 8(b),
we calculate the average accuracy in each time interval as well
as the best and worst cases for each visual stimulus. The error-
bars are related to the best and worst cases during the interval.
The performance of CG is overwhelming in all intervals and
the worse case of CG is still better than the others in terms
of BAC. Both CG and FR can provide stable authentication
performance in the 2-month test.

For both SD and II, the best performance occurs in the first
interval. And then, the decline appears approximately around
30 days. This observation indicates that the authentication
method with II or SD has a shorter lifetime than that with
CG or FR, which is about 30 days. To keep the system
performance, it is necessary to update monthly the owner
template.

D. Evaluation of Feature Dimension Reduction & Sensitivity

Since EyeVeri is implemented on resource-constrained s-
martphones, the demanded resource of the process is im-
portant. Feature selection affects both system performance
and computational complexity, which is proportional to the
demand of CPU and memory. Inadequate features results in
bad authentication performance. However, if we extract over-
sufficient features, which have no relation with each other, or
are heavily dependent on others, those redundant features can
lower the efficiency of the model, and waste CPU and memory



resources on smartphones, even decrease the battery lifetime.
In this section, we examine the effect of feature dimension on
classification performance.

We employ Sequential Forward Selection (SFS) to find sub-
sets of features that are most descriptive of the whole feature
set [39]. This is a wrapped method in that the feature selection
is based on using the classification results themselves and the
selection process wraps around the classification. Specifically,
the first feature is selected by testing each feature individually
in authentication. The feature with the best performance is
permanently added to the feature set. In the next round, each
of the remaining features combined with the existing feature
set is tested and the one with the best performance will be
chosen. The process continues until all features are selected.
Since authentication always uses previously selected features,
redundant features are not selected until the end.

Fig. 9: The impact of feature dimension on authentication
accuracy based on Sequential Feature Selection.

Fig. 9 shows the relationship between the feature number
and the balanced accuracy for each of the classifiers. In
general, the accuracy decreases as less features are included.
We can observe sharp accuracy decreases for CG, FR and
II, by 37%, 31% and 35% respectively between 21 features
and 5 features. SD demonstrates a modest decrease of 33%
throughout the whole process. The accuracy results of all
visual stimuli are quite stable until the number of features
drops below 20.

E. CPU and Memory Footprint

CG FR II SD
xCPU (Avg.) 45% 31% 36% 30%

Memory (Avg.) 41.4MB 36.9MB 35.4MB 32.4MB

TABLE IV: CPU and memory footprints on Nexus 4.

We investigate the CPU and memory footprints of the
EyeVeri implementation on Google Nexus 4. Specifically,
the CPU and memory usages are measured by the meminfo
and cpuinfo command of the Android Debug Bridge (ADB)
shell. The measurement is conducted with four visual stimuli,
respectively. As shown in Table IV, the resource consumption
in CG is more than the others. Specifically, the average CPU
and memory consumptions of CG are higher than those of the
other three. This is mainly because CG is a dynamic stimulus
implemented in the graphic interchange format (GIF), while

the others are static images. The average CPU usage of CG
is around 45%, and about 32.3% for the other three. For the
average memory consumption, an average of 41.1MB is used
for CG, and 34.9MB is used for the other three.

V. USER EXPERIENCE

We conduct two surveys on 20 users to evaluate the usability
of the approach. The first questionnaire set in Table V focuses
on how they feel about EyeVeri. The second one in Table VI
is the comparison between our novel method and some other
behavioral authentications on smartphones.

Questions Score (1-10) STD
Q1 How comfortable were you when watching CG? 9.0 0.3
Q2 How comfortable were you when watching FR? 9.8 0.2
Q3 How comfortable were you when watching II? 6.1 0.3
Q4 How comfortable were you when watching SD? 6.4 0.2
Q5 Your acceptable auth. duration? 6.2sec 1.3
Q6 Your preferred duration of eye-based auth.? 2.3sec 0.5

TABLE V: Questionnaires and scores about how the users feel
about EyeVeri. The higher the score, the more comfortable the
user feels. The answers of the last 2 questions are in seconds.

Secure Reliable Convenient Feasible Average
Eye-behavior 9.3 8.8 9.1 9.1 9.1

Gait-pattern[11] 8.3 7.6 9.5 7.3 8.2
In-air signiture[12] 7.3 7.1 8.1 7.1 7.4

Multi-touch[10] 7.8 9.5 9.1 9.7 9.0

TABLE VI: Questionnaire about how the user feels about the
potential behavioral smartphone authentication methods.

Table V shows that all users feel more comfortable with the
dynamic interaction type (CG and FR). As for the static type
(II and SD), most of the users have negative feedback because
staring makes their eyes uncomfortable. Therefore, designing
more dynamic and attractive visual stimuli is encouraged.
When discussing the acceptable authentication duration, most
users feel fine with the duration around 5sec. However, they
prefer an average of 2.3sec in the ideal case. To address this
concern, we propose to increase the frame sampling rate in
our future work.

Next, we ask users to compare the proposed method with
some other behavioral methods on smartphones, in terms of
security, reliability, convenience and feasibility. We describe
gait-pattern [11], in-air signature [12] and multi-touch screen
[10] in detail. As shown in Table VI, the users believe that
eye behavioral authentications are much more secure than
others when smartphones are mostly used in public. When
talking about reliability, they regard multi-touch screen as the
best option. Meanwhile, most users also have confidence in
the eye-behavioral approach that can keep smartphones from
unauthorized access. Regarding the convenience, the users feel
that the in-air gesture way is too complicated for daily use.
For future feasibility, the users agree that both eye-behavioral
and multi-touch authentication can eventually be applied on
smartphones. Overall, the eye-behavioral method achieves the
highest score on average.



VI. CONCLUSION AND FUTURE WORK

In this paper, we presented EyeVeri, a novel authentication
solution for mobile security based on eye movement. We
introduced the entire framework of EyeVeri and discussed
four visual stimuli in the design and the experiment phases.
The evaluation shows the promising result of applying non-
volitional eye response as a biometrics and indicates that
EyeVeri is a secure and usable approach for smartphone user
authentication. Moreover, EyeVeri can combine with other
authentication methods, such as face recognition. In the future,
we will collect more trials from each subject and recruit more
people in the long-term stability study. Also, we will further
explore the system performance under different scenarios
regarding light sources and body conditions.
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