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ABSTRACT
Inkjet 3D printing is a disruptive manufacturing technology in
emerging metal- and bio-printing applications. The nozzle of the
printer deposits tiny liquid droplets, which are subsequently so-
lidified on a target location. Due to the elegant concept of micro-
droplet deposition, inkjet 3D printing is capable of achieving a sub-
millimeter scale manufacturing resolution. However, the droplet
deposition process is dynamic and uncertain which imposes a signif-
icant challenge on quality assurance of inkjet 3D printing in terms
of product reproducibility and process repeatability. To this end, we
present Luban as a certification tool to examine the printing quality
in the inkjet printing process. Luban is a new low-cost and in-situ
droplet micro-sensing system that can precisely detect, analyze and
localize a droplet. Specifically, we present a novel tiny object sens-
ing method by exploiting the computational light beam field and its
sensitive interference effect. The realization of Luban is associated
with two technical thrusts. First, we study integral sensing, i.e., a
new scheme towards computational light beam field sensing, to ef-
ficiently extract droplet location information. This sensing scheme
offers a new in-situ droplet sensing modality, which can promote
the information acquisition efficiency and reduce the sensing cost
compared to prior approaches. Second, we characterize interference
effect of the computational light beam field and develop an efficient
integration-domain droplet location estimation algorithm. We de-
sign and implement Luban in a real inkjet 3D printing system with
commercially off-the-shelf devices, which costs less than a hundred
dollars. Experimental results in both simulation and real-world
evaluation show that Luban can reach the certification precision
of a sub-millimeter scale with a 99% detection accuracy of defect
droplets; furthermore, the enabled in-situ certification throughput is
as high as over 700 droplets per second. Therefore, the performance
of our Luban system can meet the quality assurance requirements
(e.g., cost-effective, in-situ, high-accuracy and high-throughput) in
general industrial applications.
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1 INTRODUCTION
Inkjet 3D printing [28] is one of the most popular printing tech-
niques in rapid prototyping and additive manufacturing to produce
the object from a digital model. The inkjet 3D printing process de-
posits a sequence of micro-scale (sub-millimeter) liquid droplets and
thus can achieve higher resolution and accuracy compared to other
competing 3D printing technologies such as Fuse Deposition Mod-
eling (FDM) [39], Stereolithography (SLA) [47] and Selective Laser
Sintering (SLS) [38]). The variation of droplet material can even
enable innovative printing applications, such as metal printing (e.g.,
aerospace and automobile components [19, 22]) and bio-printing
(e.g., soft tissues [9] and live organs [17]).

The key unsolved problem of inkjet 3D printing technology in
real-world applications is the lack of robust methods and inspec-
tion techniques to qualify and certify the part reproducibility and
process repeatability, due to the following two reasons. 1) High
Precision Requirement: Considering that the inkjet 3D printing
technology aims at high-dependable military and biomedical ap-
plications, the quality assurance of products must meet the sub-
millimeter level droplet sensing precision [11]. A millimeter-level
drift in process conditions will drastically impair build quality in
inkjet 3D printing. The inspection tool with higher precision than
the process resolution is highly desirable but unfortunately chal-
lenging due to the complicated dynamic jetting process. 2) High
Throughput Requirement: In order to obtain the trustworthy quality
assurance, the dependable approach is to in-situ verify the process
quality because the post-product examination [15] cannot effec-
tively obtain inside geometric and quality information. Therefore,
the in-process as opposed to post-process verification needs to be
high-throughput without compromising the machine productivity.
We have exhaustively examined the available sensing solutions, and
they cannot meet either the precision requirement (e.g., ultrasound
[8], infrared [26] and RF [29]) nor high throughput requirement
(e.g., high-resolution camera [24]). Advanced light and electron
microscope techniques [13] have potential to reach the design goal,
however, it hinders the practicality due to the fact that an ultra-fast
microscope machine costs from hundreds of thousand to millions
of dollars.
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To enable practical quality assurance in inkjet 3D printing, we
argue that the product certification tool should be able to monitor
the droplet precision on the fly. To this extent, we present the first
in-situ droplet micro-sensing system, named LuBan1, as a certifica-
tion tool to evaluate the in-process quality of inkjet 3D printing. To
accurately and reliably sense the behavior of droplets, we employ
low-cost infrared diode to implement high precision (sub-millimeter
level) sensing with the help of the computational light beam field.
By analyzing the characteristics of the light beam field, we clar-
ify the practical challenges to design LuBan, i.e., computational
light beam field sensing and integration-domain droplet localiza-
tion algorithm. Specifically, we propose to apply an integral sensing
model into computational light beam field sensing for dimension
reduction while keeping the salient location information. We also
thoroughly design the physical sensing modality to implement the
data integral process. Moreover, we develop an integration-domain
droplet location algorithm, which specifically works on the integral
field representation, by jointly applying analytical geometry and
optimization methods to improve the precision and robustness of
droplet behavior sensing. For a comprehensive evaluation, we con-
duct the complementary simulated study and real-world study to
examine the performance of LuBan and impacts to the entire inkjet
3D printing system. The results indicate that our LuBan system can
achieve sub-millimeter sensing accuracy, around 100 microns, with
more than 99% recognition rate of defect droplet location and 725
droplets-per-second throughput. To our best knowledge, LuBan is
the first droplet micro-sensing systemwhich is designed to examine
the in-process quality of inkjet 3D printing.

Our contribution can be summarized as three-fold:
• We open up a new angle to address the 3D printing qual-
ity assurance issue by micro-sensing droplet behavior. Most
existing efforts focus on parameter tuning of droplet genera-
tion.

• We prove the feasibility of utilizing the computational light
beamfield to design our dropletmicro-sensing system, LuBan.
For the sake of sensing efficiency and system costs, we ex-
plore a new integral sensing modality based on computa-
tional light beam field and associated integration-domain
data processing.

• We design a complementary simulation study and real-world
study to validate the performance of our Luban system. The
simulation study profiles the Luban’s system characteriza-
tion and the real-world study verifies the Luban’s effective-
ness in 3D printing setups.

Besides precision improvement for quality assurance, the Luban
droplet micro-sensing system has three more advantages: (1) The
entire system is cost-effective. The low-cost infrared diode is a
mature product and widely used in industry. LuBan is in-situ cor-
rection enabled. Compared with offline monitoring, our LuBan can
provide accurate and instant droplet state information, which is
critical to precise and reliable quality assurance. (2) LuBan has good
accessibility which is easy to be deployed into other existing 3D
printing systems [6]. (3) The sensing information of our LuBan

1LuBan is a typical representative of the sophisticated-skilled artisan in Chinese tale
[1].

is a low-dimension integral signal, which is helpful to reduce the
risk [40] of information disclosure.

The remainder of this paper is organized as followings: Section
2 introduces the basic principles and preliminaries of inkjet 3D
printing. The concept and practical challenges of light beam field
are presented in Section 3. Section 4 describes the system overview
of our droplet micro-sensing design. The computational light beam
field sensing in LuBan system is investigated in Section 5, and the
integration-domain droplet location algorithm is elaborated on in
Section 6. Section 7 discusses our motivation and methodology of
the evaluation plan for Luban System. In Section 8, the simulated
study is conducted and the real-world study is carried out in Section
9. Section 10 includes the related work. Finally, we conclude our
work in Section 11.

2 BACKGROUNDS
In this section, we provide a brief introduction to the basics of inkjet
3D printers. We also discuss the significance of precision for droplet
sensing system in inkjet 3D printing quality assurance application.

2.1 Inkjet 3D Printers
Inkjet 3D printing is an additive manufacturing process that works
in a similar way as the inkjet 2D printing used on a daily basis.
The liquid material is jetted out from the nozzle (print head) as
a sequence of micro-droplets and then solidified on the partially
printed part. While the print head moves over the printing area
based on the digital model, the jetted material is added and bound
with the previous layer. The platform elevates downward by one
layer-thickness after the current layer is formed. By repeating this
process, the part is constructed in a layer-by-layer fashion. Funda-
mentally, the inkjet 3D printing process converts the liquid material
into solid and the solidification mechanism includes cooling molten
material, freezing naturally liquid material, the evaporation of an
aqueous solution, gluing loose power, photo/thermal-polymerizing
thermoset materials, a chemical reaction induced covalent bonding
etc.

Inkjet Print 

Heads

Material

Reservoirs

Part

Build Platform

Elevator

Figure 1: The inkjet 3D printer structure.

A typical inkjet 3D printer is shown in Figure 1. A nozzle or a
print head is used to generate micro-size droplets of the printed
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material. The droplet is jetted to the solidified part and the liquid
material is continuously fed into the print head during the printing
process. A motion system, usually the linear stages, is necessary to
accurately move the print head to desired locations, which is con-
trolled by a microcontroller based on the geometry of the printing
part.

2.2 Significance of Quality Assurance
Inkjet 3D printing is a promising advanced manufacturing tech-
nology. Quality assurance is to examine key parameters in the
manufacturing process to certify 3D printed products. Specifically,
process precision, i.e., the droplet location, is the key quality metric
which can facilitate the broader applications of inkjet 3D printers.
Three representative implications of precision are summarized as
follows:
Printing quality: First of all, the precision leads to improved print-
ing quality, which includes geometry integrity and functional in-
tegrity. The printing quality is the key that limits the application of
inkjet 3D printing.
Environment adaptivity: Inkjet 3D printing is desired to be envi-
ronmentally friendly to expand its widespread applications. Better
precision can avoid the unfavorable environmental conditions, such
as vibration which will negatively affect the inkjet 3D printing pro-
cess.
Resource economization: Inkjet 3D printing is a one-time pro-
cess, that is if there is any defect generated, the entire part must
be abandoned and built again. This will result in energy and re-
source waste, violating the concept of current green manufacturing
paradigms. The precision can enable more energy and resource
savings.

3 LIGHT BEAM FIELD: CONCEPT AND
CHALLENGES

The light beam field is an innovative approach to accurately sense
the droplet to enable quality assurance in inkjet 3D printing. In
this section, we introduce the concept and characteristics of light
beam field. We investigate the field interference effect, which is
promising to locate the tiny object in light beam field. Eventually,
we summarize the practical challenges to design a droplet micro-
sensing system based on field interference.

3.1 Concept
Light beam field is a characterized energy field distribution which
results from a light source dispersing energy through the electro-
magnetic wave. The infrared diode is a prevalent emitter [34], which
is reliable and widely applied in industrial practice. The concept of
light beam field from the infrared diode is shown in Figure 2. The
infrared light is generated when an electric field is applied to a P-N
junction in the diode. The electrons are pushed from the N-region
and recombine with the holes in the P-region. To lessen the energy
level, extra energy is emitted in the form of heat and light. From
the generation and principle of light beam field, we can observe
three characteristics:

• Field Repeatability: The light beam field is stable and re-
peatable. Its distribution is dependent on the optical structure

Figure 2: The concept of light beam field generation, which
conveys three characteristics, field repeatability, energy con-
tinuity and energy anisotropy.

including epoxy lens/case, electrode structure and reflec-
tive cavity shape on the lead frame [31]. These mechanical
structures are stable during the whole lifetime of the light-
emitting diode (LED), which provides us the basis to model
the field.

• Energy Continuity: In a stable light beam field, the LED
has a high effectiveness of more than 70% [32]. In a 250
mW LED, more than 1020 photons of 950nm wavelength are
generated in a second [2]. All the energy is distributed in a
small area of 10 mm2 that makes it continuous along any
direction.

• Energy Anisotropy: The energy anisotropy [5] indicates
that the energy is not uniformly distributed, caused by the
effect of the reflective cavity and the refraction of the epoxy
lens/case. The radiant energy density [46] is much higher
at the point closer to the center axis and closer to the LED.
Due to the energy anisotropy, an interference happening at
different locations will have different intensity of impact in
the beam field. This provides good sensitivity to estimate
the location of a tiny object in the field.

3.2 Field Interference Effect
Field interference effect utilizes the electromagnetic disturbance
to sense the tiny intruder object. When a small piece enters the
light beam field, the interactions between object and field, including
absorbing, reflection, diffraction and refraction, will change the orig-
inal energy density distribution. This phenomenon is called “field
interference” [35]. By measuring this interference effect, according
to the intrinsic energy anisotropy, it is possible to accurately infer
the state of an intruder when interaction happens.

We provide an example of interference effect, when a droplet
passes through the light beam field, in Figure 3. The light beam field
is built by a typical infrared emitter, as shown in Figure 3(a). The
field intensity is distributed stably and continuously. If the droplet
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(b) light beam field with a droplet

Figure 3: An example of light beam field with and without
interference from the droplet.

enters into the field, as shown in Figure 3(b), we can observe obvi-
ous field intensity changes. The droplet induces an irregular and
complex intensity pattern. By quantitatively sensing this interfer-
ence effect, it is promising to estimate the location of a tiny object in
the field. However, we can also find that the droplet not only affects
the field distribution at its own location, but also its surrounding
area along the light emitter direction.

3.3 Practical Challenges
In inkjet 3D printing applications, the droplet location is the key
factor affecting the printing quality. Light beam field is promising to
be applied to the task of droplet location sensing to improve printing
precision. Towards a practical system design, two urgent challenges,
i.e., light beam field sensing and droplet location algorithm, need
to be addressed.
Light Beam Field Sensing: Although we can observe obvious
interference effect between the beam field and the droplet, it is still
a challenge to efficiently sense the interference. Due to the complex
field patterns and the motion of droplets, brute-forcingly detecting
radiant intensity at each location in the beam field to represent
the field energy distribution is obviously unfeasible. A sensing
paradigm with a larger information density is highly favored.
Droplet Location Algorithm: We need to investigate how to
accurately and efficiently estimate the droplet position from sensing
data. Considering the characteristics of sensor design and practical
non-ideal deployment, the location algorithm needs to be carefully

designed to recover the droplet location information from noisy
data inputs with the precision and real-time constraints.

4 LUBAN: IN-SITU DROPLET MICRO-
SENSING SYSTEM

In this section, we introduce the design of our in-situ droplet micro-
sensing system for the precision 3D printer. We mainly tackle the
two practical challenges mentioned in Section 3.3. Our description
starts from the system overview. We also illustrate the role of each
module in the system.

4.1 System Overview
The droplet precision is the critical factor in printing quality and
reliability of inkjet 3D printer. Our LuBan system aims to precisely
and efficiently sense the location of droplets in order to qualify and
certify the repeatability of the printing process. We provide the sys-
tem overview of our Luban in Figure 4 in a real inkjet printing task.
The entire system comprises two key components, computational
light beam field sensing and integration-domain droplet location
algorithm. Computational light beam field sensing includes integral
sensing model and its hardware implementation. The integration-
domain droplet location algorithm consists of key feature extraction,
analytical model look-up table, field model indexing and droplet
location fine-tuning module. The integral sensing module tends
to acquire the light beam field interference pattern and reduce the
dimension of the intractable field representation for the ease of
practical analysis. The key feature extraction module is designed
to find the identification of integration-domain field representa-
tion. Based on this identification, the field model indexing module
can return the parametric analytical model belonging to a specific
key feature. The analytical model look-up table is built from light
beam field characterization. Finally, the droplet location fine-tuning
module calculates the droplet position from the analytical models.

4.2 Module Details
Integral Sensing Model: When the droplet goes through the
light beam field, it will interact with the field, resulting in a high-
dimensional complex light energy pattern. However, it is intractable
to acquire the exact pattern of this interference in the analog do-
main. Therefore, dimension reduction is a necessary step to lower
the field measuring complexity while keeping the salient informa-
tion for droplet location. We apply integral sensing to reduce the
signal dimension from analog domain to digital domain to make
light beam field “computational”. It can not only integrate the orig-
inal complex field into low-dimension digital representation, but
also guarantee the information preserving by sensor number se-
lection. A new sensing modality is also designed to implement the
integral process on hardware for computational light beam field
sensing.
Analytical Model Look-Up Table: Before calculating the droplet
location information, we first conduct a preliminary study to build
a look-up table of static integral field patterns for a single pair of
light sensors. We apply the robust Gaussianmodel to fit the sensing
data in the preliminary study. This look-up table will be shared by
all the sensor pairs in the sensing modality.
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Figure 4: The system overview of in-situ droplet micro-sensing for inkjet 3D printing quality assurance.

Key Feature Extraction: The data format obtained from integral
sensing model is a time series signal. We propose to extract the key
feature of the time series to build the mapping relationship with
the analytical model in a look-up table.
Field Model Indexing: Our light beam field model uses a series of
parameters of Gaussian function to store the static field interference
pattern. It can achieve efficient memory and runtime complexity.
Once we get the key feature, we can fetch its corresponding model
for the preparation of location information estimation.
Droplet Location Fine-Tuning:We will find multiple parametric
analytical models from the look-up table due to the number of
light sensors. To discern the location uncertainties, we designed
a geometry-based optimization method to accurately locate the
droplet position in the printing space.

5 COMPUTATIONAL LIGHT BEAM FIELD
SENSING

In this section, we introduce our strategy, integral sensing, to effi-
ciently sense the light beam field with interference. For the complex
field intensity pattern in 3-D space, we integrate the field by low-
dimension representation. To keep enough information preserved,
we also discuss the integral process implementation of our LuBan
system.

5.1 Integral Sensing Model
The interference between light beam field and droplets occupies a
time-varying complex field intensity pattern as the droplet passes
through the field. It raises enormous difficulties to quantitatively
and accurately detect the changes of the field caused by interference.
To address this challenge, a data integration process to reduce the
continuous high-dimensional field to the discrete low-dimensional
data representation is highly favored. However, the main concern in
dimension reduction is to preserve salient information. We propose
an integral sensing model to address these issues, whose concept is
shown in Figure 5.

The photodiode detector [44] integrates the complex field inten-
sity distribution in 3-D space. Its view area is formed by the two
boundaries, as shown by the gray planes in Figure 5. The reading
D from the detector is the integral form of the complex pattern of
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Figure 5: An example of complex field interference pattern
sensing by an integral model.

the field F , and the integration process follows the equation:

Di,p =

∫ b

a

∫ i

i−δ t
Fi,p (t ,ϕ) dt dϕ , (1)

where Fi,p (t ,ϕ) is the 3-D field intensity at timestamp i and space
positionp. The parameterdϕ integrates the light beamfield between
the two viewing boundaries, a and b, of the detector. The viewing
boundary is decided by the intrinsic property of the photodiode
detector. Thedt integrates the light beam field in a short time period
δt . It is noted that Di is a time series because the fourth dimension,
time, is considered. Therefore, we call this data dimension reduction
method of light beam field as “integral sensing”.

The key challenge in field integral sensing is how to keep enough
intrinsic information of 2-D droplet position. Reexamination of Eq.
(1) shows that one detector can only provide 1-dimensional informa-
tion from a fixed space position p. It can only sense a partial change
of light beam field. An intuitive observation is that one sensor is
not enough, because the droplet location is a 2-dimensional infor-
mation. Therefore, multiple sensors are necessary to collect enough
field interference information for droplet location estimation.

We will have two big challenges to develop the hardware sensing
part for the integral model, sensor number and sensor layout. For
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sensor number, too few sensors are not sufficient to support the
accurate droplet location estimation. But too many sensors will
bring data redundancy, resulting in increasing computation com-
plexity. The design rule of multiple-sensor layout is to maximize
the effective information acquisition for each single sensor.

5.2 Sensing Modality: Integral Sensing
Hardware Implementation

In this section, we design the hardware part of LuBan system, a
sensor array for sensing field interference. To physically implement
the lower dimension process, we use the photodiode detector as a
field interference receiver.

5.2.1 Property of Emitter-Detector. In order to make full use of
the energy anisotropy of light beam field to achieve a high precision
location detection, we illustrate two requirements in the sensor
layout design.
Emitter-Detector In-Pair: Energy atmultiple locations is required
to effectively detect the position of the droplet. However, the light
beam field is narrowed down [43] to concentrate the energy for
better detection. Due to the narrowed light beam, the single emitter
cannot physically cover multiple detectors. Because there is no in-
terference among different light beams during propagation. So we
use multiple emitter-detector pairs to detect the energy at different
locations.
Emitter-Detector Coplanar: Our aim is to retrieve the location
information of a droplet on the solidified part. Thus, all the emitter-
detector pairs should be in the same plane which is parallel to the
X-Y plane. Its position on the Z axis decides the response time for
in-situ correction after droplet sensing.

5.2.2 Sensor Layout. Our main task is to identify the number
of emitter-detector pairs and the position of each pair. In LuBan
system, our final sensor array layout is a three-pair solution with
emitter-detector pairs arranged 120 degrees to each other, as shown
in Figure 6. We will justify our layout design from information and
practical constraints as the following:

Figure 6: The sensor layout model in LuBan system.

Information Constraints: Due to the information capacity and
noise tolerance, the sensor pair number should be no less than three.
First, the one-pair solution is obviously not feasible, because the
droplet location is a 2-D vector. Although two-pair solution seems
qualified to provide enough information, this option is not feasible

either due to its sensitivity to noise. In the system design, noise
from the measurement is almost inevitable, which will severely de-
grade the solution accuracy of the closed-form equations. Our field
interference sensing method is to collect multiple local information
from light beam field. It functions as an “integral” approach to ad-
dressing the dimension issue. Therefore, as discussed in section 5.1,
the data dimension can be bounded by three. On the other hand,
more than three pairs can indeed provide more information for
droplet location estimation with the help of robust optimization
algorithms [18]. However, the larger information redundancy also
makes the improvement insignificant and in turn increases the
algorithm complexity.
Practical Constraints: More than three-pair solutions are ex-
tremely difficult to be implemented physically due to the unique
small working area of inkjet 3D printing. Specifically, the working
area of the printing head of the 3D printer is limited in a 5×5 mm2

square. However, the size of infrared emitter and receiver is also at
the millimeter level.

Figure 7: The working area of the printing head and sensor
deployment of three pairs.

We provide an example in Figure 7 to show the physical space
constraint for a three-pair solution. We can observe that even the
three-pair layout needs to be carefully designed and deployed. Ad-
ditionally, more sensor pairs will also increase the risk of light
interference on one detector from different emitters. Therefore,
three-pair emitter-receiver is chosen to build the sensor array for
our LuBan system. To minimize the light interference risk among
the three pairs of emitter and detector, we decide to place them as
far as possible with the 120-degree angle between.

6 INTEGRATION-DOMAIN DROPLET
LOCATION ALGORITHM

In this section, we introduce the core part of software implemen-
tation in LuBan system, droplet location algorithm on integration
domain. In this algorithm, the 2-D location information can be es-
timated from three time series of the sensor array in integration
domain. To achieve better accuracy and reliability avoiding noise ef-
fect from environmental variables and imperfection of sensor array,
we develop our location algorithm based on analytical geometry
and optimization techniques. The whole algorithm includes offline
sensor calibration and online algorithm processing. The sensor
calibration is to obtain the parametric analytical models for compu-
tational light beam field. The online algorithm processing includes
key feature extraction from integration field representation, field
model indexing and droplet location fine-tuning.
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6.1 Offline Sensor Calibration
Sensor calibration is required to build the reference in light beam
field for the analytical model of the online sensing process. We
use a data-driven approach to explore the field intensity change
when interference occurs. With the reliable simulation results, we
establish the look-up table storing analytical models of Gaussian
function for the field intensity change, which is a common assump-
tion in similar applications [48]. This model is critical to uncover
the intrinsic property of interference effect for the location algo-
rithm design. The final model is recorded by the key parameters of
the Gaussian function.

Detector

Emitter

Path
Stainless Tip

X

Y

Figure 8: Sensor calibration of light beam field using stain-
less tip simulation.

Calibration Process: In the calibration process, the characteristic
data comes from a simulation of the droplet falling process by
a thin stainless tip, as shown in Figure 8. This tip can interfere
with the infrared field propagation between the emitter and the
detector. The interference effect will cause a stable weakened signal
on integration domain output at the detector end. The intensity
decreasing the degree of the signal is able to reflect the energy
density distribution of the light beam field in this space area. This
data-driven simulation can provide us constant output with the
stainless tip placed. The output is only related to the infrared beam
field distribution and can eliminate impacts from other factors.
Analytical Model Fitting: After we obtain the characteristic data,
we choose the analytical model to fit the data distribution for the
convenience of data recording and indexing. To this end, we use a
group of Gaussian functions fitting [16] to model the interference
effect on the light beam field in the integration domain, as shown in
Figure 9. The single Gaussian function is in the X-Z plane and the
group of functions is along the Y axis. The format of the Gaussian
function is expressed as the following:

GY (X ) = h − ae−(
X−b
c )2 |Y , (2)

where h, a, b and c are parameters to describe the Gaussian func-
tion. The X and Y are the axis components of integration domain
measurements and GY (X ) is the fitted Gaussian function on plane
Y. If we use all the measurements in plane Y to fit this model, the
problem can be formulated as:

{h0,a0,b0, c0} = arg min
h,a,b,c

∥Z −GY (X )∥2, (3)

where {h0,a0,b0, c0} is the optimal fitting parameters and Z is the
intensity of the integral field. This is a well-studied Gaussian fitting
problem, which can be solved by off-the-shelf toolbox [21]. For

each plane Y, we execute this fitting process and record the key
parameters. After traversing all possible Y plane, we can build the
analytical model of characteristic data on the integration domain.
We execute this calibration process for the three sensor pairs sepa-
rately. Note that an exception here is the number of measurements
on a certain Y plane is not enough to fit the Gaussian function. We
will discard such cases.
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Figure 9: Analytic model fitting for integration domainmea-
surements.

6.2 Online Algorithm Processing
The entire processing for integration domain time series includes
three main procedures, key feature extraction, field model indexing
and droplet location fine-tuning. We elaborate each part in this
section.

6.2.1 Key Feature Extraction. The algorithm starts from time
series on the integration domain, obtained from section 5. The peak
is a remarkable index feature to fetch the model for the analytical
information of the time series. The time series can be denoted as
the following:

Di = {Di
1,D

i
2,D

i
3...D

i
n }, where i = 1, 2, 3. (4)

The time series data conveys the interference change over time.
These integral field representations also have a certain amount
of noise, which increases the difficulty of peak detection of time
series. We assume each droplet is fully immersed in the light beam
field and the size of each droplet is the same which are common
cases in practice. Therefore, the trough, or the peak, of the time
series data will only relate to the field intensity distribution. Taking
efficiency and accuracy into consideration, we adopt an automatic
multiscale-based peak detection (AMPD) method [37] to identify
the peak (trough) value which is specifically designed for noisy
applications. Its formulation is as follows:

σi =
1

λ − 1

λ∑
k=1

[(mk,i −
1
λ

λ∑
k=1

mk,i )2]
1
2 , (5)
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wheremk,i indicates the matrix value of local maxima scalogram
and λ contains the information about the scale-dependent distribu-
tion of peaks. The peaks are at index i who holds σi=0. This method
has been proven valid in real world signal peak detection.

6.2.2 Field Model Indexing. The next step of our algorithm pro-
cessing is to fetch the surface model by the peak value from the
time series on the photodiode detectors. Its output is two 3-D space
curves which will be used in geometry optimization procedure.
With the help of the analytic model, this query can be done by
finding the crossing point of the Gaussian surface and the plane
parallel to the X-Y plane with a height equal to the peak value
obtained in the previous key feature extraction, which is illustrated
in Figure 10.

X

Y

X

Y
Intersections

Branch 

Curve

Peak Value Plane

Peak 

Value

Figure 10: Two branch curves retrieval in field model index-
ing by peak detection value.

All these candidate points on the intersection curve are the
possible locations where the dropping happens. For one pair of the
sensor with a single emitter and a single detector, these possible
dropping locations form a curve that has two branches.

6.2.3 Droplet Location Fine-Tuning. In this part, we estimate the
droplet location information based on curves retrieved from field
model look-up table built in sensor calibration. A multiple-field
superimposition and a geometry based optimization are designed
to find droplet location which guarantees both high accuracy and
throughput. As the detection area is very small, the working dis-
tance between is about 5mm. So the light beam field can be regarded
as a cylinder distribution in such distance levels. With this assump-
tion, we use the least square method [45] to fit the two branch
curves which are obtained from the previous model indexing step:

{k,b} = argmin
k,b

∥Y −C∥2 s .t . C(X ) = kX + b . (6)

After fitting, six analytical lines will be obtained. The droplet loca-
tion is where the three peaks that match responding sensor model.
This point can be identified by finding out all the crossing points
of three lines with each from one sensor model. In practice, some
deviation is inevitable due to the environment and hardware de-
sign variations. Therefore, we apply the center of the circumcircle
of the triangle that is formed by three intersections to estimate
the droplet location. If there are multiple circumcircles, the circle

Algorithm 1 Droplet Location Fine-tuning Algorithm

Input: D1,D2,D3:Three set of time serial data obtained from the
sensor out signal

T1(x ,y),T2(x ,y),T3(x ,y):Trough value surface of each of
the three pair of sensors

Output: (x∗,y∗):The x and y coordinate of the dropping location
1: pki =PeakDetection(Di ),i = 1, 2, 3
2: (lia , lib ) = Intersection {pki

⋂
Ti (x ,y), i = 1, 2, 3}

3: A = {(lα , lβ , lγ )|α ∈ {1a, 1b}, β ∈ {2a, 2b},γ ∈ {3a, 3b}}
4: Set Circle S = ∅
5: for (lα , lβ , lγ ) ∈ A do
6: p1 = lα

⋂
lβ ,p2 = lα

⋂
lγ ,p3 = lβ

⋂
lγ

7: Calculate Circle O from p1,p2,p3
8: S = S

⋃
O

9: end for
10: (x∗,y∗) = argmin(x,y) r s.t. O(r ,x ,y) ∈ S

with the smallest radius will be taken as the final result. The whole
algorithm can be implemented by the details in Algorithm 1.

During the detection process, a set of time serial data obtained
from each sensor noted asDi . Then the peak value detection will be
applied on the flip over signal, where the peak value will represent
the trough of the original data set. Then this peak value pki will be
used to calculate the intersection of the beam model Ti (x ,y) and a
plane where it is equal to pki , after the least square fitting it will
generate two lines from each sensor pair.

We traverse all possible combinations of one line from each sen-
sor which form the setA. In order to quantify the aggregation of the
intersection of lines, we examine the radius of the circumcircle of
the triangle formed by three lines. For each combination, the three
lines’ crossing points are noted by p1,p2 and p3. Its circumcircle
with radius r and center point coordinate(x ,y) can be calculated
and noted by O(r ,x ,y).

The final step is to find out the circumcircle that has theminimum
radius and its center point (x∗,y∗) will be the final droplet location
result.

7 EVALUATION PLAN
In this section, we introduce our evaluation plan, which includes
both simulation study and real-world experiment. However, our
simulation and real-world strategies serve a different role from the
traditional evaluation. They are complementary to each other and
evaluated by the different metrics. But, in the conventional analysis,
simulated study and real-world experiments are both evaluated by
the same performance metric. Specifically, simulated study always
serves as a demonstration of the proposed solution from theory
perspective under the ideal environmental conditions, while the
real-world study considers more practical parameters, whose model
may vary a little from the one in the simulated study, and also veri-
fies the performance and insight in the proposed solution. Therefore,
the relationship between our simulation study and real-world study
is different from the traditional case.

In our experiments, we use the location accuracy of the mim-
icking droplet as evaluating metric in the simulated study and use
the recognition rate of defect droplet as judging criterion in the
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Figure 11: Overall accuracy results: X indicates the error in the horizontal direction, Y is the error in vertical direction and R
is the error along the radial direction. The parameter Ds indicates the size of droplets.

real-world study. The reasons for our evaluation plan are as the
followings:

• The droplet deposition is a complicated process, dynamic
and uncertain, in the inkjet 3D printing. Many system param-
eters will affect the droplet behavior in the printing. What’s
worse, these parameters are even difficult to be quantitatively
controlled. One representative example is the droplet size,
which is a very tricky problem to always emit the same-size
droplets using a current extruder. As our work is the first one
to explore in-situ droplet micro-sensing solution for quality
certification, we would like to focus on the most significant
droplet location issue. Therefore, the simulation study is ca-
pable of examining the effectiveness of LuBan by placing a
thin tip in the light beam field to mimic the same-size droplet
with droplet location accuracy as the evaluation metric.

• As a quality assurance tool, the ultimate goal of our LuBan
system is to improve the product reproducibility and pro-
cess repeatability in practical inkjet 3D printing. Although
some system parameters are too complicated to be accu-
rately controlled, the real-world study is still a good method
to examine the overall system performance improvement
resulting from our LuBan system, including defect droplet de-
tection rate and the whole system throughput. Therefore, the
simulated study and real-world study are complementary
to demonstrate the accuracy of our in-situ droplet micro-
sensing system and the performance improvement of the
entire inkjet 3D printing system.

In the following Section 8 and 9, we will elaborate the simulated
study and real-world experiments, respectively.Wewill also analyze
and discuss the evaluation results.

8 SIMULATED STUDY
We conduct extensive experiments to evaluate the performance
of our droplet micro-sensing system, LuBan, towards precision
3D printing in this section. We first examine the overall accuracy
of LuBan system. Then we characterize a typical spatial accuracy
distribution in the light beam field. We also evaluate other sensi-
tive environmental factors which may affect the precision, such as
misalignment sensitivity.

8.1 Experimental Setup
In this simulated study, we use 950-nm infrared LED and photodi-
ode sensor coming from a transmissive optical sensor with photo-
transistor output [3] to build the light beam field according to the
three-pair sensor array layout. We use Arduino MEGA 2560 [42] to
collect the data of sensors. Micro-controller of ATmega2560 with 16
MHz clock frequency, 16 channels of its 10-bit ADC are used for data
acquisition of photodiode detector. We also adopt TI DM3730 [4]
as the computing platform for integration-domain droplet location
algorithm. It integrates a 1GHz ARM-Cortex A8 core [27] and 512
MByte on-board DDR SDRAM for computing intensive jobs.

For the droplet, we adopt a stainless tip to mimic its deposition
process in light beam field due to the unpredictable droplet behavior
in practical applications. This simulation can help comprehensively
evaluate the performance of our LuBan system. We use horizontal
and vertical stages controlled by step motors to move the relative
position between the print head and the sensor array with a step of
0.05mm. We also provide four different sizes of stainless tips with
the diameters as 0.24, 0.42, 0.65 and 0.91mm.

8.2 Overall Accuracy
In this experiment, we examine the accuracy of LuBan system
to sense the position of the droplet. Considering the size of the
droplet is a significant factor that varies over different applications
of LuBan, we use all four types of stainless tips with a diameter as
0.24, 0.42, 0.65 and 0.91mm to mimic droplet size variability. We
record the position of the stainless tip in advance and take this
result as our ground truth. After the estimation of the location
algorithm in LuBan, we collect the absolute error information from
horizontal axis (X), vertical axis (Y) and radial axis (R). Note that the
radial axis R indicates the Euclidean distance to the ideal position,
i.e., R =

√
X 2 + Y 2. All the cases have 50 trials and our results are

shown in Figure 11. We analyze Figure 11 from four aspects, high
precision, optimal droplet size, X-Y similarity and high stability.
High Precision:We can observe that the overall accuracy of our
LuBan system is about 100 microns, which sufficiently matches
the sub-millimeter manufacturing accuracy of inkjet 3D print-
ers [17, 33]. We take the median of the radial direction error as
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our evaluation criterion. All the cases are under 100 microns, es-
pecially the 0.65mm case only with 42-micron error. Also, we can
find that the errors decomposed into two axes are even smaller.
Optimal Droplet Size:When we compare the error information
under different droplet sizes, we can find its trend is a typical single-
valley curve, as the green dashed line with star marker shows in
Figure 11. As the size of the droplet increases to 0.65mm, the error
takes on a declining change. However, the error becomes larger as
the size increases.

This optimum is because our location algorithm utilizes the inter-
ference of the beam field, if the droplet size is small, the interference
will be too weak to be easily identified. If the droplet size is large,
the interference is so strong that it covers over the variation of
the beam field distribution. The location information will not be
easily recovered. Therefore, we have an optimal droplet size option
for a specific light beam field. What’s more, if certain application
constraints the droplet size, such as metal printing or bio-printing,
we can also optimize the light beam field to achieve the optimal
accuracy by configuring the droplet size.
X-Y Similarity: Specifically, we can observe that the error in the
horizontal axis (X) has a similar trend with the vertical axis (Y).
Their error distributions are similar in all four cases. The reason is
that by deploying the sensor pairs in an axisymmetric way, it will
increase the symmetry of the superimposed beam field distribution
along X and Y directions. Thus their errors take on similar statistics
under different droplet sizes. The radial error is a little larger than
the other two sub-axis errors. In fact, the radial error is affected by
both horizontal and vertical errors.
High Stability: If we have a closer look at the distance between the
minimal and maximal errors of the radial direction, we can find that
they have subtle variations in all four cases. This demonstrates our
LuBan system has a good stability on droplet position sensing. Our
location algorithm is based on analytical geometry and optimization
technique, which enables the capability to resist obvious outliers.
This property guarantees the stability of our LuBan sensing system.
Without loss of generality, we choose droplet diameter of 0.65mm
for the following simulated studies.

8.3 Spatial Accuracy Distribution
To make our accuracy distribution more concrete, we characterize
the spatial accuracy distribution in the beam field superposition
area which is also the sensor array working range. We move the
stainless tip across the whole working range by the step of 0.05mm,
monitored by our LuBan system. The characterization result is
shown in Figure 12.

We can find that the spatial accuracy has smaller errors in the
center area and around boundary area. Larger errors appear in
the area between them. By carefully examining the fitting process
of the Gaussian curve and the intersection line, more data points
deviate in this area in both cases, which brings most of the detection
error. More fundamentally, this is caused by the imperfect light
beam field shape distribution which is not an exact cylinder. But
this cylinder approximation can work well in a small range area.
Additionally, by customizing the emitting infrared diode, especially
the shape of the epoxy lens/case and the relative location of the
P-N junction, better cylindrical light beam field can be obtained.

Figure 12: Spatial accuracy results of LuBan system.

This will greatly improve the detection accuracy. We also find
that the entire distribution is a symmetrical pattern. This results
from our symmetric layout of three diode pairs. This kind of error
distribution is suitable for the droplet location detection, because
in most cases, the droplet falls in the center area where higher
accuracy is guaranteed.

8.4 Misalignment Sensitivity
The Luban system needs multiple sensor pairs to construct the
symmetrical sensor layout. However, absolute symmetry is difficult
to be guaranteed in practical applications. We aim to examine the
sensor pair misalignment effect on LuBan system in this experiment.
We intentionally misalign the sensor pairs by purpose of manual at
five levels, -10 (counter-clockwise), -5, 0, 5, and 10 degrees, which
are likely to appear in practice. We collect the error information
under each testing case. Final results are shown in Figure 13.

Figure 13: Accuracy under five misalignment cases. An ex-
ample is provided to illustrate the misalignment.

From Figure 13, we can find that the small-angle misalignment
does not cause much accuracy degradation. Although misaligned
by 10 degrees, the accuracy is only decreased by about 4 microns.
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This is because, in the calibration procedure, the information of
each pair direction has been integrated into the beam field model.
However, if the misalignment is too large, the emitted infrared beam
field may be detected by not only the paired one with it but also the
detector adjacent to it. This will violate our modeling assumption
and bring large errors. So the sensor pair holds 120-degree angle
with another pair in our preferred sensor layout. A misalignment
within 10 degrees will be easily corrected in such layout. Therefore,
our LuBan system can resist to the sensor pair misalignment in
practical applications.

9 REAL-WORLD STUDY
In this section, we conduct the real-world study of applying our
LuBan system to real inkjet 3D printing jobs. Specifically, we intro-
duce our experimental setup. We also examine the defect droplet
detection accuracy of our LuBan system in real applications. Fi-
nally, we investigate the sensing delay of LuBan and the system
robustness to the ambient light noise.

Figure 14: Prototype of our LuBan system, including 3D
printer, sensor array, print head and control board.

9.1 Experimental Setup
We conduct real inkjet 3D printing on a prototype printer as shown
in Figure 14. The printer prototype consists of a printing head, a
material tank and an air pressure subsystem. The printing head has
a micro-solenoid. When a voltage is applied, the valve is open and
allows the liquid to flow out. By applying a short pulse voltage and
air pressure over the material, a droplet can be generated at the
orifice of the nozzle. Material tank stores the liquid material and the
controlled air pressure is applied to control the droplet behavior.
We examine four types of liquid materials, i.e., pure water, green
ink (bio-ink), red ink (bio-ink) and black ink (bio-ink), where the
colorful inks are commonly-used in bio-printing [20]. Each ink will
mix with the water by volume percentage of 10%, 20% and 30%.
We also provide two types of the nozzle, 0.13mm and 0.25mm, for

droplet size variation. For the ground truth, we use a camera with
a microscope to examine the droplet position on the solidified part
of the 3D printer.

9.2 Test Accuracy
We investigate the defect droplet accuracy of LuBan under three
sensitive system parameters, i.e., droplet size, material and density.
Different from the simulated study, the material of droplet becomes
a significant factor to affect the precision of LuBan system. In the
previous study, we use a stainless tip as a droplet simulator. We
can simulate droplet size by tip diameter, but we can’t simulate
the material variations. In practical applications, it is very helpful
to change the printing materials to fulfill different application re-
quirements. As it is difficult to accurately control the size of the
droplet, we identify droplet size by nozzle diameter, 0.13mm (0.005")
and 0.25mm (0.01"). We also use three types of ink, red, green and
black, to make droplets with different materials and percentage. We
choose percentage as 10%, 20% and 30% ink mixing with water. In
inkjet printing, the 100-micron deviation is allowed to guarantee
the part printing quality [10]. Eventually, we collect the recogni-
tion rate of the defective droplet whose deviation is larger than
100 micron as our evaluation criterion. The detailed results are
illustrated in Figure 15. We analyze Figure 15 from three aspects,
high precision, material impact and concentration impact, as the
followings:
High Precision: We can find that our LuBan has an extremely
high recognition rate, more than 97%. Specifically, we first check
the droplet size effect on accuracy. This part is consistent with the
results from the simulated study. The large-size droplet can obtain
better accuracy. Thus, it can achieve better recognition rate. We
can even find that the larger-size droplet with 30% black ink can
even achieve an accuracy of 99.68%.
Material Impact: We continue to investigate the material impact
on recognition rate of defective droplets. As shown in Figure 15,
the black ink is better than green ink, and the green ink is better
than red ink. This is because the main interference effect on the
beam field made by the droplet is absorption. Particles in the black
ink can absorb the widest range of light in different wavelengths.
Thus, it causes the largest light beam field disturbance. For green
color, it is good at absorbing some lights. Thus it can improve the
accuracy but not as good as the black color.
Concentration Impact: Finally, we check the concentration im-
pact. We can observe that higher concentration can always obtain
better accuracy. This is because of more particles in the water that
can absorb more light energy. This will make more obvious in-
terference in the light beam field. Therefore, this demonstrates
the content of the liquid printing material can largely affect the
defective droplet detection accuracy.

9.3 Delay Overhead Analysis
System Delay Characterization: In this section, we investigate
the time efficiency of our LuBan system. We choose the green ink
with a density of 20% as the droplet source in this experiment. We
collect the runtime information of all the components in LuBan
system, including sensor response of transforming light energy
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Figure 15: Accuracy of real world study. It compares the effect of droplet size (Ds ), material color(Mc ) and density (Md ).

into electric energy, analog-to-digital conversion and droplet loca-
tion algorithm. The system-level runtime breakdown statistics are
shown in Table 1.

Table 1: Runtime of all components in LuBanmicro-sensing
system.

Sensor AD Location Total
Response Conversion Algorithm Delay
10.6 µs 66.7 µs 1302.5 µs 1379.8 µs

From Table 1, we can find that the total delay of our LuBan
system is about 1.38 ms. This is rapid enough to implement an
in-situ correction to remove the defective droplets in inkjet 3D
printing with a 5ms time bound [36]. Another observation is that
droplet location algorithm takes up the majority of runtime by
94.4%. This is because the energy format transforming and ADC are
both hardware-level operations. However, an integration-domain
droplet location algorithm is implemented at the software level.
Algorithm Runtime Breakdown: We also would like to further
analyze the time breakdown of droplet location algorithm. We use
Gem5 [7] to simulate the ARMCortexA8 core to collect the statistics
of the runtime of each module in the droplet location algorithm. We
also count the runtime from IO and memory since our algorithm is
running onARM core. The detailed runtime breakdown information
is shown in Figure 16.

We can observe that the computing of droplet location algorithm
is the bottleneck with 78.2% proportion, compared with the total
21.8% from both memory and IO. Inside the computing part, the
geometry optimization is the main consumer, taking up 53.6% of the
algorithm runtime. This optimization needs super computations
on the ARM core while peak detection and model indexing execute
simple arithmetic operations. This phenomenon provides us a di-
rection to optimize the geometry optimization to further improve
the sensing throughput of LuBan.

9.4 Robustness to Ambient Light Noise
Ambient light noise is always a practical issue to the light beam
based sensing, especially in the open scenarios. In this experiment,
we investigate the light noise effect on our LuBan System. Our detec-
tor has an operation wavelength at 950nm, which is in the infrared
range that can avoid some of the influence of visible light in daily

Figure 16: The runtime breakdown of the droplet location
algorithm on the ARM platform.

life. We set different levels of visible light strength, 10 mW/cm2,
50 mW/cm2, 100 mW/cm2 and 200 mW/cm2, for the experiment
environment. We repeat the experiment 10 times randomly for each
noise level. Then we apply our location algorithm to estimate the
position of the droplet. The detection accuracy of defect droplet is
shown in Figure 17.
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Figure 17: Accuracy of LuBan system under four environ-
mental noise levels.
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We can observe that LuBan can successfully cope with the noise
no more than 10 mW/cm2. But as noise level continues to increase,
LuBan will compromise large accuracy. In fact, our location estima-
tion algorithm is based on the combination of analytical geometry
and optimization. Thus, it has a light-weight noise immune ability.
However, as the noise increases to hide valid information, it will
distort the fitting process of the Gaussian curve surfaces. The fail-
ure of fitting results compromises larger accuracy. Therefore, we
should choose an environment with less light noise when using
LuBan.

10 RELATEDWORK
There is some research work related to our LuBan system design
in the inkjet 3D printing application. We summarize them into two
main categories:
3D Printer Monitoring: Monitoring for the 3D printer to ensure
its normal working state is a hot topic. Faes et al. designed a process
monitoring system for extrusion based 3D printing with a laser as
its sensing tool [14]. However, this method is based on the off-line
monitoring. It cannot be integrated with the in-situ quality assur-
ance and certification system. Some other work [12, 41] focused
their attention on the online temperature monitoring of 3D printer.
They built a complete control loop to correct the exceptions in time.
Different from the high precision requirement of our droplet moni-
toring application, these works were to optimize the time efficiency
under a much looser accuracy constraint.
Light-based Sensing: Light is a promising approach in sensing
technology for its property of stability and free-interference. Li et
al. developed a practical human sensing modality in the light [23].
They could recognize the person posture with LED arrays and opti-
mization method based on shadow information. This work cannot
enable the sub-millimeter level application due to its shadow analy-
sis from light. On the other hand, light-based droplet monitoring is
investigated in the microfluidic community. These researches were
almost concentrating on monitoring the size and velocity of the
droplet to guarantee its usability for subsequent processing [25, 30].
But the droplet location precision was not well studied, which is
the biggest concern in inkjet 3D printing quality assurance.

11 CONCLUSION AND FUTUREWORK
In this paper, we investigated a droplet micro-sensing system,
LuBan, to examine the quality assurance of inkjet 3D printing.
Our micro-sensing system was based on interference effect from
light beam field to detect the defect droplet in the printing process.
We started from the basics of inkjet 3D printer. We introduced the
concept of light beam field and the promising field interference
with droplets. For the practical challenges to design LuBan system,
we presented specific strategies to tackle the problems. The integral
sensing was applied to reduce the measurement complexity of the
complicated interference pattern. We chose a three-pair emitter-
detector solution to design the hardware prototype of sensing for
LuBan. Moreover, we developed a geometry based optimization
approach to accurately estimate the droplet position in the field
space. Extensive experiments indicate that our LuBan can achieve
sub-millimeter level precision, which can meet the quality assur-
ance requirements. In the real-world printing study, LuBan can

detect more than 99% defective droplets to drastically improve the
part quality of inkjet 3D printer.

In the future work, we consider handling the imperfection of the
droplets, such as satellite effects and multiple droplets aggregation.
On the other hand, we also plan to further improve the performance
of droplet micro-sensing for inkjet 3D printer quality assurance
applications.
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