
135
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Using wireless signals to monitor human vital signs, especially heartbeat information, has been intensively studied in the past
decade. This non-contact sensing modality can drive various applications from cardiac health, sleep, and emotion management.
Under the circumstance of the COVID-19 pandemic, non-contact heart monitoring receives increasingly market demands.
However, existing wireless heart monitoring schemes can only detect limited heart activities, such as heart rate, fiducial
points, and Seismocardiography (SCG)-like information. In this paper, we present CardiacWave to enable a non-contact
high-definition heart monitoring. CardiacWave can provide a full spectrum of Electrocardiogram (ECG)-like heart activities,
including the details of P-wave, T-wave, and QRS complex. Specifically, CardiacWave is built upon the Cardiac-mmWave
scattering effect (CaSE), which is a variable frequency response of the cardiac electromagnetic field under the mmWave
interrogation. The CardiacWave design consists of a noise-resistant sensing scheme to interrogate CaSE and a cardiac
activity profiling module for extracting cardiac electrical activities from the interrogation response. Our experiments show
that the CardiacWave-induced ECG measures have a high positive correlation with the heart activity ground truth (i.e.,
measurements from a medical-grade instrument). The timing difference of P-waves, T-waves, and QRS complex is 0.67%,
0.71%, and 0.49%, respectively, and a mean cardiac event difference is within a delay of 5.3 milliseconds. These results indicate
that CaridacWave offers high-fidelity and integral heart clinical characteristics. Furthermore, we evaluate the CardiacWave
system with participants under various conditions, including heart and breath rates, ages, and heart habits (e.g., tobacco use).

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Human-centered
computing→Ubiquitous andmobile computing systems and tools; •Applied computing→ Health care information
systems.
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1 INTRODUCTION
Electronic tools for cardiac activity monitoring, including Electrocardiogram (ECG), are an important clinical
approach that tracks and diagnoses the health status of human hearts. The market of cardiac monitoring tools
is expected to reach $6,637 million by 2023 [65]. However, current practice in cardiac monitoring still mainly
employs contact skin-irritating attachments (i.e., electrodes and sensors) that could result in unpleasant user
experience and medical waste.
In recent decades, non-contact cardiac monitoring solutions have been widely explored. The mainstream of

non-contact cardiac monitoring is based on the thorax wall vibration from cardiac beat activities. This vibration
can be detected through Doppler effects [46] using wireless wave-signals. For example, systems using WiFi
signals [69] and RFID technologies [78] are investigated to measure chestwall coarse vibrations and then estimate
the basic heart parameters, such as heart rate. Recent studies leverage higher-frequency sensing modalities, e.g.,
mmWave [26] and laser sensors [43], to achieve the recording of thorax vibrations. However, the underlying
mechanism of these works rely on Doppler effects, which can only manifest limited cardiac activities (e.g., heart
rate and SCG-like signals) due to the inconsistency of measuring locations and signal-to-activity correspondence
among literature [63].

Fig. 1. CardiacWave is a non-contact sensing solution to monitor high-definition heart activities via mmWave scattering on
chest.

To date, the golden tool to clinically characterize cardiac activities is still the ECG devices. The correspondence
between ECG and several major cardiac physiological events is described as a fiducial point system [35]. For
example, the ECG P wave is related to atrial depolarization, QRS complex, and T wave correspond to the
ventricular depolarization and repolarization, respectively. Being aware of the advantages of ECG, previous study
[11] proposed to use the photoplethysmography that can be acquired from remote face camera [34] to estimate
the ECG parameters. However, camera is sensitive to the ambient light and the proposed method still lacks
granularity, i.e., the ECG signal is not sensed. As a result, a fine-granularity and non-contact cardiac electrical
activity monitoring system is still an open challenge.

In this paper, we present CardiacWave, a remote and high-granularity heart monitoring system, as shown in
Figure 1.CardiacWave brings two significant advantages to cardiac electrical activity computing: (1) Unobtrusive:
CardiacWave performs remote and device-free cardiac electrical activity monitoring. Therefore, users can get
rid of cumbersome electrodes and the skin condition such as sweat will not influence the monitoring quality.
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(2) Informative: CardiacWave can monitor the cardiac electrical activity from multiple axes (i.e., channels) and
provide ECG-like high-resolution, multi-channel measures.
CardiacWave is based on the Cardiac-mmWave scattering effect (CaSE) that the electromagnetic (EM) field

induced by cardiac electrical activity will modulate the chest-scattered mmWave signals with activity information.
Though the CaSE guides us a promising path, constructing CardiacWave is still non-trivial because the cardiac
EM field is a complex field sourced from numerous cardiac cells. Moreover, the field varies with time due
to the periodical cardiac activity. Acknowledging this, we remark three challenges to be addressed to realize
CardiacWave. (a) Remote and integral sensing of CaSE. In order to get the CaSE response, we leverage the
frequency modulated mmWave with 4-GHz bandwidth for integral interrogation. Then, the interrogation response
is demodulated combining time and frequency domain information and the noise is eliminated. Afterwards, we
employ mask-based learnable filters to extract integral CaSE features. (b) Cardiac activity profiling for ECG
signals generation. Reconstructing ECG-like signals from the extracted CaSE features is challenging due to
the complex coupling between CaSE and ECG signals. We first analyze the bridging mechanism, i.e., the ionic
concentration in cardiac cells is the root of cardiac EM field and ECG signals. Knowing the mechanism, we model
the signal reconstruction as solving a partial differential equation problem. We develop a data-driven deep neural
network that can profile the cardiac activity as a solver, thereby reconstructing multi-channel and high-resolution
ECG-like signals. (c) Comprehensive evaluation of CardiacWave. Aiming for unobtrusive and informative
heart electrical monitoring, we design and conduct experiments from cardiac event integrity and signal fidelity
perspectives. Experiment results show that the normalized error of P waves, T waves, QRS complex, R-R interval,
Q-T interval are less than 0.91%. The correlation coefficients between the reconstructed ECG-like signal and ECG
baseline is around 0.9. Further usability and robustness analyses show that CardiacWave’s performance will not
be impacted by the body conditions and wearable accessories.
To conclude, our contribution has the following three aspects:

•We propose a new non-contact and high-definition scheme of cardiac electrical activity computing by exploring
the cardiac-mmWave scattering effect (CaSE). We discover that the cardiac electromagnetic field modulates rich
cardiac electrical activity information into the chest-scattered mmWave response.
• We develop CardiacWave to provide ECG-like high-resolution and multi-channel measures. CardiacWave
utilizes frequency-modulated mmWave to interrogate the CaSE. A deep neural network-based cardiac activity
profiler is designed for reconstructing full ECG-like signal from CaSE features.
• We conduct extensive experiments over 40 subjects. We demonstrate that generated ECG-like signals have
high integral cardiac events and signal fidelity. Moreover, CardiacWave is robust to the muscle excitation during
the daily activity, where ECG signals are not appliable.

2 RELATED WORK
Non-contact heart monitoring has attracted much attention in the recent ten years. Different from the traditional
approaches (e.g., attaching sensors on chest [14], neck [38], wrist [9], arm [76], and foot [41]), non-contact heart
monitoring enables sensor-free solutions where user experience will not be degraded because of skin irritation or
activity limitation.

Existing non-contact cardiac monitoring is mainly based on the thorax wall vibration caused by cardiac activity.
In the early stage, many works leverage WiFi and RFID to detect heart rate viability and fiducial points [69, 72].
Zhao et al. [77] used RF signals to extract individual heartbeats for emotion recognition. Lin et al. [46] employed 2.4
GHz Doppler radar to implement a non-contact and continuous sensing system to capture heart rate and fiducial
points for user authentication. Zhao et al.[78] developed an RFID-based non-contact respiration and heartbeat
monitoring system. With the promotion of sensing technology, recent works start to explore Seismocardiography
(SCG)-like information. Kroschel et al. [43] proposed a laser-based remote measurement approach for achieving
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SCG-like vital parameters. Ha et al. [26] leveraged a 77 GHz FMCW radar and deep learning technology to
develop an RF-SCG system that can capture SCG-like signals without contacting the human body. In addition,
camera is used for capturing the Photoplethysmogram (PPG)-like and Ballistocardiogram (BCG)-like information
[36, 64]. However, these existing non-contact cardiac monitoring works limit the potential in healthcare and
medical applications because they only monitor the heart from a single axis (channel) and are not able to provide
high-resolution cardiac activity information.
Different from the existing systems, CardiacWave is the first non-contact system designed to provide multi-

channel and high-definition Electrocardiogram (ECG)-like heart activities, including P waves, T waves, and QRS
complex, which are the de facto analytical framework of heart-related inspection and research. To achieve the
goal, CardiacWave utilize the cardiac-mmWave scattering effect to interrogate the cardiac electrical activity. We
introduce the rationale behind CardiacWave next.

3 BACKGROUND AND PRELIMINARIES

3.1 Cardiac-mmWave Scattering
Heart is the principal organ in human circulatory system that pumps blood to deliver nutrients and oxygen to
body parts. To pump blood, heart contracts rhythmically, which is driven by the coordinated polarization of an
enormous number of cardiac cells (i.e., cardiac electrical activity) [25]. The cardiac cells can generate current via
polarization and depolarization, acting as source elements that produce a significant varying electromagnetic
(EM) field [66]. As illustrated in Figure 2, heart and its EM field can be modeled as a electric dipole system [40].
Clinical ECG system measures the current on the body surface to solve the current density of the source elements
[48], thereby helping cardiac disease diagnosis. Considering the magnetic part of the cardiac EM field can extend
outside the body, polarized high-frequency EM waves, i.e., mmWave, can be rotated during the scattering over
the chest surface due to the Faraday effect [74]. The scattered mmWave therefore is modulated and carries
the varying cardiac EM field information in its frequency, namely Cardiac-mmWave Scattering effect (CaSE).
Hypothesis: As the electric field is associated with the magnetic field by Maxwell’s equation [67], as depicted in
the Figure 2, we hypothesize that it is possible to leverage the CaSE for cardiac electrical activity information
interrogation, which contributes towards ECG signal reconstruction.

Fig. 2. Cardiac electric activity that ECG measure can be sensed by mmWave via Cardiac-mmWave scattering effect.
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3.2 Proof-of-concept Study
To support the hypothesis, we design and conduct preliminary experiments in a controlled environment.

3.2.1 Setup and protocol. During the experiments, a subject wears a portable cardiac monitor Shimmer [58] (see
Section 7.2 for sensor specifications). The subject is first asked to do squats to increase the cardiac activity intensity.
Then, the subject sits in front of a 76-GHz mmWave probe, aligning chest center to the mmWave probe. We choose
Frequency-Modulated Continuous Wave (FMCW) as the emitting waveform for an easy separation of the chest
movement’s influence, including breathing and heartbeat impacts, in further analysis. The probe continuously
emits mmWave and receives the response. Simultaneously, the cardiac monitor records the corresponding cardiac
electrical activity for reference. The subject is asked to hold their breath for five cardiac cycles as their heart rate
gradually falls back to the resting level (i.e., from 120 BPM to 70 BPM). Since the breathing impact is mitigated,
we proceed with the corresponding mmWave responses.

3.2.2 Analysis and summary. We analyze the mmWave response via FMCW intermediate frequency (IF), which
is the subtraction between the emitted signal and the mmWave response in the frequency domain (i.e., mixing). In
this way, we can further isolate the impact of chest movement induced by heartbeat while retaining the varying
CaSE information. Figure 3 shows the IF of two distinct cardiac electrical activities, i.e., atrial depolarization and
ventricular repolarization, and their difference with different heart rates (70 BPM versus 120 BPM). The IF is
averaged over five cardiac cycles to suppress random noise and the frequency bands containing clutters from
chest movement are labeled. We observe that the responses on CaSE bands are nonidentical for distinct types of
cardiac electrical activity over the frequency spectrum. Moreover, the mmWave responses are different when the
activity intensity changes. As the mmWave response varies based on the types and the intensity of the cardiac
electrical activity, our hypothesis is validated.

Fig. 3. The cardiac-mmWave scattering responses of different cardiac activity types and the frequency differences. The blue
area indicates the frequency bands of CaSE and the dark area contains potential clutter from chest movement. (Left: heart
rate = 70 BPM; Right: heart rate = 120 BPM).

3.3 Design Targets
Having explored the relation between ECG and CaSE, we have the following two design targets for CardiacWave:
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• CaSE integral sensing. The cardiac EM field exists around the human chest and varies over time. To
acquire the integral information of the EM field, an integral CaSE sensing is demanded.

• Multi-channel ECG generation. ECG signals contain rich information about heart electrical activities
including but not limited to the cardiac events, which are distributed in multiple channels. Therefore,
CardiacWave aims to reconstruct multi-channel ECG-like signals from the sensed CaSE response, thereby
boosting heart electrical activity computing.

4 CARDIACWAVE OVERVIEW
In this paper, we present CardiacWave, a first non-contact multi-dimension cardiac electrical monitoring solution.
CardiacWave is designed to have an akin architecture to the existing sensors that have physical quantity sensing and
convert-to-signal modules (e.g., microphone). The two modules that form CardiacWave’s sensor-like architecture
are illustrated in Figure 4.

Fig. 4. The overview of CardiacWave. CardiacWave leverages mmWave to interrogate cardiac EM field. The scattered
mmWave response is fed to feature extraction and cardiac activity profiling module to reconstruct multi-channel ECG-like
signal.

• CardiacWave Sensing. CardiacWave sensing scheme is designed to capture the integral CaSE response. In
terms of functionality, this front-end module is analog to the diaphragm that senses air vibration in the MEMS
microphone. We first interrogate the CaSE via 76 GHz frequency-modulated mmWave with superior sensing
capacity. Since the CaSE response varies over time, we demodulate the response in both time and frequency
domains. The noise in the generated response matrix is then suppressed to increase the signal-to-noise ratio.
Afterward, we develop learnable masks to extract the integral CaSE features from the response matrix.

• Cardiac Activity Profiling. Cardiac activity profiling is to generate ECG-like signals from the interrogated
CaSE features. This software-based module is analog to the coil in the MEMS microphone that converts the
vibration to the digital signal in terms of functionality. By analyzing the common root of cardiac EM field and
ECG signals, we deduce the CaSE-ECG coupling as a partial differential equation. A deep neural network (DNN)
based cardiac activity profiler is developed to solve the equation. In particular, the profiler utilize recurrent
architecture to capture the cardiac dynamics constraint. Then, a wavelet-based error function is applied to
perceive the cardiac event during the DNN optimization.

5 CARDIACWAVE SENSING SCHEME
In this section, we elaborate on the sensing scheme by first modeling the CaSE. Then, a mmWave-based interro-
gation and pre-processing are detailed, followed by a mask-based CaSE feature extraction.
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5.1 CardiacWave Modeling
The CaSE, as illustrated in the Figure 2, is related to the frequency shift of mmWave response due to the cardiac
activity-induced variable EM field. Specifically, the variable cardiac magnetic field 𝐻 is distributed about the
location and time [39], which can be described as:

4𝜋𝐻 (𝑡, 𝑟 ) =
∫
V

ˆ𝐽 (𝑡) × ∇( 1
𝑟
) d𝑣, (1)

where 𝑟 is the distance from an external field point at which 𝐻 is evaluated to an element of volume d𝑣 inside the
body, ˆ𝐽 (𝑡) d𝑣 is a source element of cardiac EM field with current density ˆ𝐽 (𝑡), and ∇ is an three-dimensional
gradient operator. Consequently, the mmWave scattering on chest will be impacted by a path-dependent mismatch
factor 𝛽𝐿 (𝑡) [37] because of the magnetic field influence on the polarization of the mmWave [70], expressed as:

𝛽𝐿 (𝑡) =
∫
𝐿

cos2 (V`𝐻 (𝑡, 𝑟 ) d𝑙), (2)

where V is Verdet constant [17], ` is the permeability, and 𝐿 is the mmWave propagating path. The above
equation reveals that the scattered mmWave response has frequency shift related to the cardiac EM field on
different frequency components, which can be expressed as:

𝐶 (𝑡) =
∑
𝐿

𝐴𝑡𝑒
𝑗2𝜋 𝑓𝑡 𝛽𝐿 (𝑡), (3)

where𝐶 (𝑡) is the CaSE response,𝐴𝑡 and 𝑓𝑡 are the amplitude and frequency of the mmWave, respectively. Having
modeled the CaSE, we next elaborate on the interrogation approach of CardiacWave.

5.2 CardiacWave Interrogation
The first step to sense cardiac electrical activity is to obtain a CaSE presentation of good quality using appropriate
mmWave properties: (1) Waveform. Considering the continuity of cardiac activity monitoring, continuous
wave is preferred. The single-tone continuous wave is not used because it cannot provide the required multiple
frequency components for frequency shift analysis. Consequently, we adopt frequency-modulated continuous
wave (FMCW) as the waveform of interrogation. (2) Frequency. In order to enhance the CaSE, higher frequency
is preferred as the Verdet constant in 𝛽 (Eq. (2)) will be larger [42]. However, mmWave with a frequency higher
than 100 GHz attenuates fast and often requires expensive devices. CardiacWave uses 76 GHz that is supported
by various commercial products [2] to gain a balance between sensing capability and cost. During interrogation,
the probe emits the mmWave towards chest. The incoming mmWave is scattered from chest and its frequency is
changed due to the CaSe. Then, the response containing cardiac EM field information is captured by the receiving
probe. Finally, the received signal is sent to preprocessing followed by feature extraction.

5.3 Pre-processing
5.3.1 Response 2D demodulation. Given the time-varying mmWave response, it is crucial to have both the
time and the frequency domains for further processing. Thereby, we utilize the short-time Fourier transform
to demodulate the response. The mmWave signal captured by the probe will be divided into a series of small
windows, which guarantees an appropriate time and frequency-domain resolution for each spectrogram. After the
division, signals in these small windows will be transformed. Formally, the 2D demodulation outputs a response
matrix C = [𝐶 ′

1 (𝜔),𝐶 ′
2 (𝜔), · · · ,𝐶 ′

𝑚 (𝜔)]. Each column can be formulated by

𝐶 ′
𝑚 (𝜔) =

∞∑
𝑛=−∞

𝐶 [𝑛]𝑤 [𝑛 −𝑚𝑅]𝑒−𝑗𝜔𝑛, (4)
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where the𝑤 is the Hamming window to provide higher Signal-to-noise ratio (SNR), 𝑅 is the step size between two
successive windows. Here we set step size and window size as the time length of one FMCW chirp for adequate
time and frequency domain resolution, respectively.

5.3.2 Body movement noise suppression. The response matrix C contains not only the CaSE response but also
the noise components come from the direct mmWave reflection on human chest and other even other body areas,
i.e., body movement noise. As the FMCW waveform for CardiacWave interrogation uses sweeping frequency,
the reflection and multi-path effect will finally form multiple high-energy noise peaks [45] on each column of
the response matrix (𝐶 ′

𝑚 (𝜔)). To improve the SNR, the peaks need to be eliminated. CardiacWave leverages the
constant false alarm rate (CFAR) method [52] for noise detection and elimination. For a specified false alarm rate
𝑝noise (i.e., the rate that a non-noise frequency component is detected as a noise peak), CFAR can maximize the
noise detection probability according to the Neyman–Pearson lemma [56]. In particular, CFAR applies a moving
average filter𝑊CA (·) for each column of the response matrix. Then, a threshold matrix 𝜎 is calculated by

𝜎 =𝑊CA (C) · |𝑊CA | · ((𝑝noise)−
1

|𝑊CA | − 1), (5)

where𝑊CA (C) is the filtered response matrix, |𝑊CA | is the length of the moving average filter. For any element 𝑐
in C that is greater than the corresponding element 𝜎 (𝑐) in 𝜎 , we consider 𝑐 as a noise peak and set 𝑐 = 𝜎 (𝑐). We
empirically choose 𝑝noise = 0.001, |𝑊CA | = 8 (see Section 7.4).

5.4 CaSE Mask-based Feature Extraction

Fig. 5. CardiacWave feature extraction.

CardiacWave utilizes the frequency shifts induced by the cardiac EM field to sense the cardiac electrical
activities. Given the two-dimension (i.e., the time and frequency domain) response matrix, a properly designed
mask filter should be capable to extract the CaSE feature from the frequency shift to represent the cardiac
electrical activity information. However, the response matrix is totally different from the 2D image in terms of
physical model. This key difference rejects most existing mask filters designed for graphics, e.g., the Sobel mask
[68] for edge detection. Therefore, we employ mask filter with learnable coefficients, of which the mechanism is
illustrated in Figure 5. Particularly, we randomly initialize multiple masks to filter the CaSE response to get initial
features. The features are not representative at this time because the mask coefficients have not been learned
yet. Then, we try to recover the response matrix from the features via unmask operations [61] as representative
features should carry enough information of the CaSE response [10]. This step can be formulated as

𝑔 = argmin
𝑔,𝐺

MSE(C,𝐺 (𝑔(C))), (6)

where 𝑔 and 𝐺 are coefficients of mask filters and unmask operators, respectively. MSE is the mean square error
function. Since mask filter and unmask operation are differentiable in terms of the recovery error MSE, we are

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 135. Publication date: September 2021.



CardiacWave: A mmWave-based Scheme of Non-Contact and High-Definition Heart Activity Computing • 135:9

able to update the mask coefficients via gradient descent [55]. Once the mask coefficients are learned, we use the
updated masks to extract the CaSE features. We visualize the data generated by each step of the sensing scheme
in Figure 6. It is clear from the visualization that the noise due to chest movement is eliminated and different
CaSE features are learned. To provide enough ability to capture various minor frequency shift, CardiacWave uses
3 × 3 as the mask size and 64 as the number of the masks.

Fig. 6. Data visualization of each signal processing step in the entire CardiacWave sensing scheme.

6 CARDIAC ACTIVITY PROFILING

6.1 Solving CaSE-ECG Coupling
As described in Section 5.1, CaSE is caused by the cardiac EM field, whose root is the cardiac electrical activity.
To profile cardiac electrical activity and get ECG records, it is important for us to understand how CaSE and ECG
are coupled together. According to the Eq. (1), the 𝐻 field is excited by the source element ˆ𝐽 (𝑡), which is revealed
to be dependent on the ionic concentration in cardiac cells by cardiac electrophysiology:

ˆ𝐽 (𝑡) = 𝛾𝑇

𝑧𝐹
ln

(
𝑃K
𝑎K𝑜

𝑎K
𝑖

+ 𝑃Na
𝑎Na𝑜

𝑎Na
𝑖

+ 𝑃Cl
𝑎Cl𝑜

𝑎Cl
𝑖

)
, (7)

where 𝛾 is the gas constant, 𝑇 is the absolute temperature, 𝑧 is the valence of the ion, 𝐹 is the Faraday constant,
𝑃 is the permeability to the ion, and 𝑎𝑖 , 𝑎𝑜 are the concentration of the ion inside and outside the membrane,
respectively [53]. The summation over ˆ𝐽 (𝑡) in all locations (represented by indexes 𝑖, 𝑗, 𝑘) forms the ECG signals
[13], which can be formulated as:

ECG(𝑡) = −
∑
𝑖, 𝑗,𝑘

®𝐷 (𝑡) · ®𝑟
𝑟 3

, ®𝐷 (𝑡) ∝ ∇ ˆ𝐽 (𝑡), (8)

where ®𝐷 is dipole proportional to the gradient of ˆ𝐽 (𝑡) and ®𝑟 represents the distance between the cardiomyocytes’s
location and the ECG measurement point. The Eqs. (1)-(3), (7), and (8) together show the whole picture of
CaSE-ECG coupling and forms a partial differential equation system (PDEs), by solving which we are able to get
ECG signals. A typical approach to deal with complex PDEs is using the finite element method for a numeric
solution [59]. Nevertheless, the finite element method requires a large amount of computation and the calculated
solution will be no longer valid when the conditions change. Accordingly, CardiacWave solve the CaSE-ECG
coupling by data-driven deep neural networks (DNN), which recently show its power on solving PDE modeled
problems efficiently [47]. Figure 7 shows the overarching design thinking and the stack of the cardiac activity
profiling module. In the rest of this section, we detail the two specific designs that make the module.
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Fig. 7. CardiacWave’s DNN-based activity profiler and the design thinking.

6.2 Capturing Cardiac Dynamics
The most intuitive question to develop the data-driven solver (i.e., the cardiac activity profiler) is how to design
the DNN architecture to learn the mapping between CaSE and ECG signal from the data. Most of the successful
DNN models are developed for text (e.g., BERT [21]) or image processing (e.g., ResNet [28]). On the contrary,
models for signal mapping across sensing modalities are still lacking. According to the NFL theorem [71], a model
specifically designed for the problem can provide better approximation than generic models by introducing
domain knowledge. In particular, Eq. (7) indicates that the source element ˆ𝐽 (𝑡) depends on the ionic concentration,
which can be effectively modeled by discrete-time Markov formalism, according to cardiac dynamics researches
[23, 30]. As the Markov property resides in the root of the CaSE and ECG, we construct a temporary neural
network module that can capture the signal temporal properties (high-order Markov property) to retrieve integral
information from CaSE features. More specifically, we adopt the recurrent neural network (RNN) design. Long
Short Term Memory (LSTM) [32] is used to capture the high-order Markov property as:

FoldR(𝐶𝐸𝐿𝐿, [0,C0, · · · ,C𝑡 ]), (9)

whereC𝑡 is the concatenation of the 𝑡-th columns of all CaSE feature matrixs and𝐶𝐸𝐿𝐿 is the LSTM cell.𝐶𝐸𝐿𝐿 can
be regarded as a function closure that takes (hidden_state, cell_state) and CaSE feature, and returns (hidden_state’,
cell_state’). FoldR is a high-order function that can recursively apply 𝐶𝐸𝐿𝐿 on the combination list. Compared to
Gated Recurrent Unit [16], LSTM can provide higher reconstruction capacity.
Although LSTM is capable of draining the information in CaSE feature leveraging the Markov property, it

cannot deal with the periodicity information, because both mmWave interrogation and ECG are signals of high
sampling rate, i.e., numerous data points are required to show periodicity. In this case, LSTM suffers from gradient
vanishing during the optimization [31]. Therefore, we use the attention mechanism [75] to retrieve the long-term
heart activity information. The attention mechanism can be formulated by

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = Softmax
(
𝑄𝐾 ′
√
𝑑𝑘

)
𝑉 , (10)

where 𝑄 is queue matrix, 𝐾 is key matrix, 𝑉 is value matrix, 𝑑𝑘 is the dimensions of query and key vector. We
set 𝑄 = 𝐾 = 𝑉 as the LSTM output so that the attention mechanism can capture the periodicity information of
cardiac activity in a larger time scale.
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6.3 Perceiving Cardiac Event
The DNN design based on the cardiac dynamics is driven by pursuing the reconstructed ECG-like signal with the
maximum fidelity. Therefore, the target function describing the fidelity (fidelity function here after) plays an
important role in CardiacWave’s activity profiler. In ECG reconstruction, we not only focus on the global average
distance between the reconstructed signal and the ground-truth ECG, but also the local cardiac event that is
valuable in clinic. As the most widely used Mean Squared Error (MSE) usually flattens the peaks and valleys of the
signal, we propose to use the distance between Discrete Wavelet Transform (DWT) coefficients [7] as the fidelity
function. Specifically, we consider symlet wavelet [7], which balances the support width and vanishing moment
and has good regularity to detect peaks and valleys effectively. In addition, it helps to avoid the influence of noise
on the ECG signal. Thereby, the fidelity function in CardiacWave is defined as the 1-norm of DWT coefficients:

L𝑤 =
1
𝑁

𝑁∑
𝑖=1

(T𝑥𝑖 − T𝑦𝑖 ) ,T =

∞∑
𝑘=−∞

𝑥 [𝑘] 𝑓 [2𝑛 − 𝑘], (11)

where 𝑥𝑖 is the 𝑖𝑡ℎ data generated by the profiler, 𝑦𝑖 is the 𝑖𝑡ℎ ground truth ECG data, T is the DWT coefficients.
𝑓 could be a high-pass filter or a low-pass filter to perceive cardiac events and signal distance.

7 CARDIACWAVE PROTOTYPING AND EVALUATION SETUP

7.1 Prototype Design
To achieve integral sensing of CaSE, CardiacWave choose the 4 GHz bandwidth ranging from 77 GHz to 81
GHz that provides enough room for capturing the CaSE-induced frequency shift. Many off-the-shelf mmWave
probes are capable of generating the required mmWave. We adopt the Texas Instruments AWR1642Boost [3]
for prototyping. We set the probe chirp period as 50 `s and the sampling rate as 256 samples per chirp. The idle
time among chirps is 150 `s. The above specifications result in a 5000-Hz interrogation rate of the cardiac EM
field. Then, we down-sample the interrogation to 500-Hz using nearest interpolation. During the experiment, we
set the Rx gain as 30 dB and use a single TX and RX antenna. With this setting, the power consumption of the
mmWave probe is around 9𝑊 .

7.2 Evaluation Setup
7.2.1 Experiment preparation. We conduct extensive experiments to examine the capability of CardiacWave
for cardiac monitoring. As shown in the Figure 8, the experimental setup can be divided into the ECG part (left)
and the mmWave part (right). For ECG part, a subject is asked to sit in a chair in a relaxed position. We use
off-the-shelf ECG Development Kit [58] (Shimmer 3TM, hereafter, Shimmer ECG) to measure the subject’s ECG
signal at 500 Hz as the ground truth. Specifically, four limb electrodes are attached to the subject, forming three
ECG channels, i.e., channels I (LA-RA), II (LL-RA), and III (LL-LA). The RL is used as the reference electrode. For
mmWave part, we align the mmWave probe in the direction of the subject’s chest center to continuously sense
the cardiac EM field. The subject orientation is 0◦ with respect to the probe, and the distance between the subject
and the probe is 1 m. The mmWave signals are sent to the laptop with a 100-Mbps network adapter via RJ45 jack
for recording. The training processes are done by an Nvidia Titan Xp graphical card with Pascal architecture [4].

7.2.2 Data Collection and Partition. The proposed study is approved by our institutional review board. In
this study, we recruit 40 healthy subjects (i.e., 20 males and 20 females) with their ages from 18 to 52 using
email advertisements. Their weights are in the range of 45 kg to 84 kg. For each of them, we collect 10-minute
ECG signals and reflected mmWave signals simultaneously. Both signals are synchronized to the clock on data
gathering laptop. As for segmentation, the sample size is set to 500 data points (one second) and we empirically
choose a 50% overlap (500 ms) between two adjacent samples. According to the segment length, we finally collect
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Fig. 8. The evaluation setup. Left: the ground-truth ECG sensor and its leads; Middle: subject’s relative position; Right: the
CardiacWave sensing probe.

47960 samples. We randomly select 30 subjects and use their samples (35876, 75%) for training, and the samples
from the rest subjects are used for testing. The trained model is used in the following experiments by default
unless otherwise stated.

7.3 Evaluation Metrics
7.3.1 Activity Event Integrity. (1) Normalized Error. The CardiacWave reconstructed signals (we use recon-
structed ECG-like signals or ECG′ interchangeably) are expected to have integral cardiac events to enable heart
electrical activity computing. As shown in the Figure 1, the modern ECG cardiac event system involves three
principal components, which are P wave, QRS complex, and T wave [19]. Similar to RF-SCG [26], we use the
normalized error of these components as a metric (i.e., PErr,QRSErr, and TErr), which is the normalized difference
between the reconstructed ECG-like timing and the ECG baseline timing, formulated as:

Err =
|CardiacWave Reconstruction − ECG Baseline|

Heartbeat duration
(12)

Besides, the time elapsed between R-waves of two successive QRS complexes (R-R interval) is associated with
respiratory sinus arrhythmia [44], diabetes [12], and mental disorders such as insomnia [60]. Additionally, the
time elapsed between the start of the QRS complex and the end of the T wave (Q-T interval) has been adopted
as the major indicator of ventricular pro-arrhythmicity [73]. Therefore, we propose to measure the normalized
error of Q-T interval (QTErr) and the R-R interval (RRErr) per cardiac cycle between the reconstructed ECG-like
signal and ECG baseline to evaluate the cardiac event integrity. All the timings are labeled based on the channel I
signal and synchronized to other channels. (2) Weighted Event Distortion (WED): WED is a integrated events
distortion highly correlated with experts’ visual inspect and opinion according to studies [49, 79, 80] in the field.
The WED can be calculated as:

WED(ECG, ECG′) = 100Δ ®E𝑇 × diag(𝜙)
trace(diag(𝜙)) × Δ ®E,

Δ ®E = [
|E𝐸𝐶𝐺

𝑖 − EECG′
𝑖 |

max(E𝐸𝐶𝐺
𝑖

, EECG′
𝑖

)
], 𝑖 ∈ [1, 10]

(13)
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where 𝜙 represents weights, Δ ®E is the cardiac event feature vector detailed in Table 1, diag(·) and trace(·) are
diagonal matrix and trace functions. 𝜙 is set to [2 1 1 1 1 1 2 2 1 1] to better fit cardiologists’ opinion [80]. Typically,
reconstructed ECG-like signals with WDD in range [0, 12], (12, 18], (18, 40] are considered to be “Good”, “Not
Good”, and “Bad” [8], respectively.

Table 1. Cardiac event features [80] used for WED calculation.

Cardiac Event Features Description

Duration-based feature the duration between ...
E1: cardiac cycle two successive R peaks
E2: ventricular depolarization the start and the end of QRS complex
E3: entire ventricular systole the start of the QRS complex and the end of T wave
E4: ventricular isovolumetric contraction the start of the QRS complex and the T peak
E5: atrial depolarization P wave
E6: AV node conduction the start of P wave and the start of QRS complex
Strength-based features
E7: ventricular capacity The maximum positive amplitude of QRS complex
E8: interventricular septum depolarization The minimum negative amplitude of QRS complex
E9: atrial contraction The amplitude of P wave
E10: cardiac sympathetic nervous excitation The amplitude of T wave

7.3.2 Signal Fidelity. As cardiac electrical activity has been discovered to have more implicit information, such as
emotional and identity information, it is vital to reconstruct high-fidelity ECG signals for facilitating further heart
activity computing. We use cross-correlation (Corr) [49] and signal-to-noise ratio (SNR) [51] to evaluate
the reconstructed ECG-like signals from the perspective of fidelity. Corr is a measurement of signal similarity
widely used in signal processing. It has the following form when we compare the reconstructed ECG-like signal
with the ECG baseline:

Corr = (ECG′ ★ ECG) [𝜏] =
∞∑

𝑗=−∞
ECG′[ 𝑗]ECG[ 𝑗 + 𝜏], (14)

where parameter 𝜏 is the displacement. As ECG′ ★ ECG is a curve with regards to 𝜏 , the auto correlation of the
ground truth (AutoCorr), i.e., ECG★ ECG is used as benchmark. Additionally, the cross-correlation coefficient
(normalized Corr) is adopted to give a quantitative evaluation of the reconstructed ECG-like signals. Reconstructed
signals with high fidelity would give a Corr close to the benchmark. In addition, considering CardiacWave is a
novel cardiac monitoring scheme with sensor-like architecture, it is natural and important to evaluate the fidelity
of the reconstructed ECG-like signals in terms of sensing SNR. Notably, we understand the noise as the difference
between the ECG and the ECG′ (which is widely adopted in ECG quality evaluation [8, 18, 51]). Thereby, the
SNR is formulated as:

SNR𝑑𝐵 = 10 log10

( ∑
𝑛 [ECG[𝑛] − ECG]2∑

𝑛 [ECG[𝑛] − ECG′[𝑛]]2

)
. (15)

7.4 System Calibration
We conduct system calibration to observe the influence of the noise suppression parameter𝑊CA and 𝑝noise to the
system and empirically determine the parameter value for the following evaluation. In detail, we use SNR𝑑𝐵 as
the metric of the sensing noise. We observe the mean SNR𝑑𝐵 with 𝑝noise being set to 0.1, 0.01, 0.001, and 0.0001,
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respectively. For each setting of 𝑝noise, the𝑊CA ranges from 8 to 32. The results reported in Figure 9 show that
when the 𝑝noise = 0.001 and𝑊CA = 8, the CardiacWave has best performance on SNR𝑑𝐵 . With the increasing of
the𝑊CA, the SNR𝑑𝐵 decreases as large moving windows may dilute the CaSE information.

Fig. 9. The mean SNR𝑑𝐵 of CardiacWave with different settings of𝑊CA and 𝑝noise.

8 CARDIAC EVENT INTEGRITY
To evaluate the cardiac event integrity, we leverage an automated ECG analysis algorithm [6] over the testing data
to label the cardiac event features. We first calculate the average accuracy of the three ECG principle components
over all the testing data and show the result in Figure 10. The normalized error of P wave, T wave, and QRS
complex is observed as 0.67%, 0.71%, and 0.49%, respectively. The corresponding cardiac event difference is 6.1
ms, 4.2 ms, and 5.7 ms, respectively. We note that the error of the QRS complex is lower than that of the other
two components. One reason for the better performance of QRS complex reconstruction is the QRS complex has
a sharp peak that can be easily perceived by the DWT-based fidelity function. This phenomenon also reveals that
the CardiacWave event integrity could be further improved in the future by using the newly discovered better
fidelity function.

Fig. 10. The normalized error of CardiacWave in terms of T wave, QRS complex, and P wave.

Then, we calculate the normalized error of the R-R interval and Q-T interval. As observed in Figure 11, the RRErr
of 50% reconstructed ECG-like signals range from 0.14% to 0.75%, while the QTErr of 50% reconstructed ECG-like
signals range from 0.27% to 1.16%. To be specific, the mean value of RRErr and QTErr are around 0.51% and 0.91%,
respectively. Overall, CardiacWave achieves better performance in reconstructing R-R interval compared with
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Fig. 11. The normalized error of CardiacWave in terms of Q-T interval and the R-R interval.

that of Q-T interval. The reason behind this is two-fold. First, as a part of the QRS complex, the R peak can be
easily perceived by the fidelity function. Second, the R peak causes a stronger CaSE response because the R peak
is the most vigorous cardiac electrical activity that pumps blood to the human body.
To further analyze the normalized error distribution of R-R interval and Q-T interval reconstructed by Car-

diacWave, we report the accumulated frequency of RRErr and QTErr in Figure 12. We observe that 95% of the
reconstructed ECG-like signals are with RRErr < 1.28% and QTErr < 2.57%, which is a strong indicator that
CardiacWave can provide superior cardiac activity event integrity. By preserving accurate Q-T and R-R interval
information, the ECG-like signals reconstructed by CardiacWave show the great potential to help the diagnosis
of a series of physical and mental disorders, such as sinus arrhythmia, diabetes, and insomnia [12, 44, 60].

Fig. 12. The accumulated frequency of RRErr and QTErr in CardiacWave.

Furthermore, we report the Weighted Event Distortion (WED) in Figure 13 to demonstrate CardiacWave’s
integrity from the time duration and amplitude perspectives (features are detailed in Table 1). As observed in
Figure 13, the reconstructed multi-channel ECG-like signals report “Good” quality in terms of WED, where the
mean WED of channels I, II, and III are 6.15 (std=2.41), 7.05 (std=2.95), and 6.24 (std=3.33), respectively. These
results reveal that not only Q-T and R-R interval features of the reconstructed ECG signals are integral, but also
their various cardiac event features are good to the cardiologist for reference. We observe the WED of channel II
is slightly greater than the other channels, the reason behind which might be the channel II signal has a lower
amplitude. This implies the performance on channel II can be further improved by applying normalization [62].
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Fig. 13. The weighted event distortion of CardiacWave.

9 SIGNAL FIDELITY
Figure 14 shows a five-cardiac-cycle reconstructed ECG-like spectrum by CardiacWave and the corresponding
ECG measurement (baseline) of one subject. The reconstructed ECG-like signals present the same periodicity
compared with the ECG baseline in Channel I, II, III. In each cardiac cycle, the local maximum and minimum of
reconstructed signals are close to those of the baseline. The slight misalignment randomly happens in these three
channels from our observation. To summarize, CardiacWave is feasible to reconstruct visually accurate ECG
data. With this basic sense of the CardiacWave performance, we then quantitatively evaluate the fidelity of the
reconstructed ECG-like signals by the correlation and the SNR.

Fig. 14. The comparison between CardiacWave reconstructed signals and the corresponding ECG baseline among Channel I,
II, III.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 135. Publication date: September 2021.



CardiacWave: A mmWave-based Scheme of Non-Contact and High-Definition Heart Activity Computing • 135:17

We conduct the correlation analysis between 10-second reconstructed ECG-like signals and their corresponding
ECG baseline. As shown in Figure 15, the mean correlation coefficients of Channel I, II, and III are 0.901, 0.892,
and 0.913, respectively, with the standard deviation being around 0.06. The p-values for these channels are all less
than 0.0001, which suggests the significance of the finding. Therefore, we can conclude that the reconstructed
ECG-like signals yield a strongly positive correlation with the ECG baseline.

Fig. 15. The correlation coefficients between CardiacWave reconstructed signals and the corresponding ECG baseline among
Channel I, II, III.

Further, the quantitative SNRs are evaluated and shown in Figure 16. The mean SNR of reconstructed ECG-like
signals in Channel I, II, and III are 6.07, 5.79, 5.07 dB, respectively. The minimum SNR values in these three
channels are all above 3.7. The accumulated frequency curve in Figure 16 depicts the distribution of SNR. We
observe that 95% of reconstructed ECG-like samples are with SNR>5 for Channel I, SNR>4.75 for Channel II, and
SNR>4.25 for Channel III. The above observations indicate the superior fidelity of the reconstructed ECG-like
data by CardiacWave.

Fig. 16. Left: the SNR performance of CardiacWave in Channel I, II, III; Right: the accumulated frequency of SNR in Channel
I, II, III.

Summary. CardiacWave offers satisfying integral clinical characteristics and signal fidelity in the evaluation
in Sections 8 and 9. Besides, we notice that the WED will raise up to 300% when we use conventional MSE loss as
the fidelity function. This is because the cardiac event perceiving in the activity profiler can significantly capture
the fiducial points such as P, T, and R peaks. Meanwhile, the SNR decreases 3.3 dB on average when we leverage
mmWave interrogation without applying noise suppression, which demonstrates our proposed noise-resistant
sensing scheme can help acquire more integral and fidelity heart information. Therefore, we can summarize that
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the developed sensing scheme and cardiac activity profiler meet the design targets, and CardiacWave has a good
capability to monitor high-definition heart electrical activities in a non-contact manner. In the following two
sections, we analyze the usability and the robustness of CardiacWave, respectively.

10 USABILITY ANALYSIS

10.1 Impact of Heart & Breath Rate Variability.
In different situations, users’ heart and breath rates may vary due to physical/social activities. This motivates us
to explore whether heart and breath rate variation will degrade CardiacWave’s performance. We invite three
subjects from the testing group to participate in this experiment. As breathing is easier to control and will affect
heart rate, we first explore the impact of heart rate variability without breathing influence. The participants
are asked to do sports to raise their heart rates to 150 beats per minute (BPM) or above. Then, their ECG and
ECG′ were measured continuously with the same setup in Sections 7.2, until their heart rates fall below 100 BPM.
Notably, participants are asked to hold breath when their heart rates are around 140, 120, and 100 BPM so that the
influence of breath is controlled. The mean QTErr and RRErr of the reconstructed ECG-like signals are depicted in
Figure 17. From 100 to 140 BPM, the mean QTErr are 0.83%, 0.82%, and 0.79%, and the mean RRErr are 0.58%, 0.57%,
and 0.54%. Next, the participants are requested to take 15, 20, 30 breaths per minute and last for 2 minutes with
the help of a stopwatch, where the configuration “15 breaths per minute” is close to the resting status and needs
less effort to control. As shown in Figure 17, the mean QTErr are 0.83%, 0.81%, and 0.82%, and the mean RRErr are
0.60%, 0.57%, 0.61%, respectively.

Fig. 17. The QTErr and RRErr performance of CardiacWave with different heart and breath rates.

Insight. The curves of QTErr and RRErr show a slight decrease when the heart rate increases. The reason is
that the cardiac activity becomes more vigorous as the heart rate increase. The vigorous cardiac activity enhances
the CaSE response. Moreover, the events are perceived more easily due to the increase of ECG amplitude. We
believe the slight decrease when the rate is 20 breaths per minute is because the heart rate fluctuates when the
participants make more efforts to control their breath rate. The participants also confirmed that 20 breaths per
minute is harder to achieve compared with the other two breathing rates. These results indicate the CardiacWave
has a strong tolerance to heart and breath rates variability.
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10.2 Impact of Tobacco Use.
Tobacco strongly influences the heart’s functionality. There are over one billion people who use tobacco [5] around
the world and more than 30% of the non-smoker were exposed to secondhand smoke [1]. To enable potential
application in healthcare, CardiacWave should have no performance decrease on people who use tobacco. We
recruit two participants who used tobacco within one day and collect 10-minute ECG ground truth and RF ECG
data. As observed in Figure 18, the WED of reconstructed ECG-like data from tobacco and non-tobacco user is
7.69 and 7.62, respectively.

Fig. 18. The WED performance of CardiacWave with tobacco usage.

Insight. The WED of reconstructed ECG-like data from tobacco and non-tobacco user locates in the range
“Good” and the performance of CardiacWave appears to be unaffected by tobacco use. While Nicotine and other
ingredients in tobacco may affect the iron concentration in cardiac cells [15], we believe the intrinsic CaSE-ECG
coupling is much less influenced since the electromagnetism relation between CaSE and ECG remains unchanged.

10.3 Impact of Age.
CardiacWave is expected to have no bias on different age groups as a novel heart activity computing scheme. In
this experiment, we divide the testing participants into five age groups and recruit five extra participants so that
each group has three participants. All the experimental setup is the same as we mentioned in Section 7.2. As
shown in Figure 19, the WED of reconstructed ECG-like data from the five age groups are around 6.7, which can
be considered as “Good”.

Fig. 19. The WED performance of CardiacWave with different age groups.

Insight. The results illustrated in Figure 19 indicates that the CardiacWave performance will not be affected
by age factor. Thereby, we anticipate that CardiacWave can largely benefit the old people who have the cardiac
electrical monitoring requirements but have difficulties in setting up the electrodes.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 135. Publication date: September 2021.



135:20 • Xu et al.

10.4 Impact of Gender.
CardiacWave is also expected to have no bias between male and female. Here, we perform correlation analysis
between reconstructed ECG-like signals and the baseline among 20 males and 20 females. No bias is observed in
the results shown in the Figure 20. The mean correlation coefficients are 0.88 and 0.90 for males and females,
respectively. The results are close to 1 and are considered to be highly positive correlation [50].

Fig. 20. The correlation coefficients of the reconstructed ECG-like signal for different genders.

11 ROBUSTNESS INVESTIGATION

11.1 Impact of Exercise.
CardiacWave is expected to facilitate heart electrical activity computing in various situations, especially the
scenarios that are in demand but ECG cannot be applied, such as exercise. Especially, intense weightlifting may
cause severe heart attack [22]. However, electrodes-based ECG monitoring is limited because the chest muscle
excitation under this circumstance will dominate the ECG, resulting in an unstable heart activity recording [29].
Therefore, we are interested in if CardiacWave can facilitate heart electrical activity monitoring in this case. We
invite a participant to do dumbbell lifting in front of the probe and record the RF ECG data and ECG baseline
simultaneously. The distance between the participant and the probe is 1 m. The participant wears a XiaoMi band
[33] to record the heart rate via PPG.

Fig. 21. CardiacWave is robust to dumbbell exercise whereas ECG is severely interfered by muscle excitation.
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Insight. As shown in Figure 21, CardiacWave is capable to record heart’s electrical activity. As the ECG in
this scenario is corrupted, we compare the heart rate calculated by CardiacWave reconstructed signals with
that reported by XiaoMi band and find that the difference is 3 BPM. To adapt to the exercise involving location
changes, such as running, mmWave beamforming [26] can be integrated into the CardiacWave sensing scheme
for target tracking.

11.2 Sensing Range & User Orientation.
Sensing range and user orientation are two key factors that influence the robustness of CardiacWave. Car-
diacWave should require minimum user cooperation and be tolerant to unfixed locations. Therefore, we conduct
the experiments to examine the CardiacWave’s performance under changeable sensing distances and human
orientations. Specifically, five subjects are asked to sit align to the mmWave probe while the distance between
the subjects and the probe is set from 1 m to 3 m with a 1-meter distance step. As shown in Figure 22, on each
distance configuration, we have orientation configuration at 0°, ±30°, and ±60°.

Fig. 22. The WED performance of CardiacWave with different sensing distances and orientations.

Insight. The results show the mean WED locates in the range from 7.21 to 7.90, which are considered to be
good quality. We observe that the WED decreases slightly as the distance and orientation increase. The reason
is that the attenuation of mmWave slightly decreases the SNR. The performance of the prototype under these
circumstances could be further improved by integrating beamforming function.

11.3 Impact of Accessories.
Users may wear different kinds of accessories on demand in some cases. Therefore, we are curious about whether
these wearable accessories can affect mmWave signals and lead to an unfavorable performance. The participants
are requested to wear three commonly used accessories in this experiment, i.e., a wool scarf, earpods with MIC,
and a ballpoint pen fabricated by plastic and ink that can be attached to the chest pocket, respectively. Particularly,
the MIC of the earpods is placed in front of the chest to test if the MIC-generated EM field will interfere with the
CaSE. Figure 23 shows that the errors of P wave, T Wave, and QRS complex are around 0.50, 0.65, and 0.70.
Insight. The above results indicate that these three wearable accessories do not degrade the performance of

the CardiacWave. As regards the scarf, the CaSE can not be shielded by the material because of the mmWave
penetration. We observe that the CardiacWave’s error faintly increases due to the earpods EM field interference.
The field is relatively static and attenuates fast so that it can only interfere with a small part of the cardiac
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Fig. 23. The PErr, QRSErr, and TErr performance of CardiacWave with different accessories.

EM field. By learning mask coefficients under the EM field interference, CardiacWave can further improve its
robustness to ambient EM interference.

12 LIMITATION AND FUTURE WORKS
In this section, we discuss the limitations of CardiacWave and identify the future works of CardiacWave to forge
a practical medical tool.

• Cardiac States. Cardiac system is a rather complex system coordinated by multiple parts and millions of
cells. Considering the activities in daily life, CardiacWave can be evaluated in the future on varying cardiac
states via rigorous protocol, such as cold-pressor [24]. Moreover, the malfunction of different parts results in
distinct cardiac EM fields [27]. Future works can evaluate CardiacWave on cardiac disease patients and further
determine the applicable range of CardiacWave. For the mentioned evaluations, a larger population could help
to reduce bias [57].

• Environmental variance. Considering that the CaSE effect is based on the mmWave scattering of cardiac EM
field, environmental variance such as EM leakage could influence the performance of CardiacWave. To adapt
CardiacWave to different environments, an effective calibration mechanism is required. For most daily-life
scenarios (e.g., smart home health monitoring), we anticipate the multi-path effect is relatively static and only
one calibration during the first-time deployment will be needed. In addition, spatial filtering technologies [20]
can be used for better isolation of the CaSE effect in complex environments by increasing the SNR. As common
customer electronics are designed with good EM compatibility [54], we remain the performance under EM
leakage unevaluated. Yet, the impact of other high-frequency EM wave leakage sources like microwave ovens
on performance should be explored and evaluated in future work.

• System integration.We anticipate CardiacWave can be seamlessly integrated into most indoor environments
with continuous power supply, such as gyms and workshops to improve sports and occupational safety. Further
researches on concurrent heart activities monitoring could help to reduce the number of the required hardware.
For potential applications on mobile devices, how to integrate CardiacWave into mmWave baseband processor
or other dedicated chips for better energy efficiency is still an open problem.
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13 CONCLUSION
Existing non-contact cardiac activity monitoring solutions are limited by immature analysis tools for achieving
fine-granularity cardiac characterization in healthcare applications. In this paper, we propose CardiacWave, a
mmWave-based non-contact and high-definition heart electrical activity monitoring system to provide ECG-like
heart activities measure, including P-waves, T-waves, and QRS complex. We first investigate the cardiac-mmWave
scattering effect (CaSE), i.e., the electromagnetic field caused by cardiac electrical activity can impact the chest-
scattered RF signals. Based on it, we leverage the 76 GHz frequency-modulated mmWave to interrogate and
demodulate the CaSE response. After noise suppression and mask-based feature extraction, we fed the integral
CaSE descriptors to a deep neural network-based cardiac activity profiler for generating ECG-like signals.
Experiment results show that the weighted event distortion of generated ECG-like signal is around 7, which
indicates good cardiac event integrity. Also, CardiacWave measures have a high positive correlation with ECG
baseline.
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