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a b s t r a c t

Majority of practical multivariate statistical analysis and optimizations model interdependence among
random variables in terms of the linear correlation. Though linear correlation is simple to use and
evaluate, in several cases non-linear dependence between random variables may be too strong to ignore.
In this paper, we propose polynomial correlation coefficients as simple measure of multi-variable non-
linear dependence and show that the need for modeling non-linear dependence strongly depends on the
end function that is to be evaluated from the random variables. Then, we calculate the errors in
estimation resulting from assuming independence of components generated by linear de-correlation
techniques, such as PCA and ICA. The experimental results show that the error predicted by our method
is within 1% error compared to the real simulation of statistical timing and leakage analysis. In order to
deal with non-linear dependence, we further develop a target-function-driven component analysis
algorithm (FCA) to minimize the error caused by ignoring high order dependence. We apply FCA to
statistical leakage power analysis and SRAM cell noise margin variation analysis. Experimental results
show that the proposed FCA method is more accurate compared to the traditional PCA or ICA.

Published by Elsevier B.V.

1. Introduction

With the CMOS technology scaling down to the nanometer
regime, process as well as operating variations have become a
major limiting factor for integrated circuit design. These variations
introduce significant uncertainty for both circuit performance and
leakage power. Statistical analysis and optimization, therefore, has
generated lot of interest in the VLSI design community.

Existing work has studied statistical analysis and optimization
for timing [1–5], power [6–9], and spatial correction extraction [10].
Most of these papers assume independence between random
variables when performing statistical analysis. In order to obtain
independence, most existing works use linear transformations, such
as principal component analysis (PCA) or independent component
analysis (ICA), to de-correlate the data. However, when there is non-
linear dependence between the random variables under considera-
tion, both PCA and ICA cannot completely remove the dependence
between random variables. PCA can only remove linear correlation1

between random variables but cannot remove the high order

dependence. On the other hand, ICA tries to minimize the mutual
information between the random variables.2 However being a linear
operation, ICA often cannot completely remove the dependence
between random variables.

In practice, the dependence between different variation sources is
rarely linear (e.g., Vth is exponentially related to Leff). Therefore,
ignoring such non-linear dependencies can cause significant error
in analyses. There are some existing techniques for handling arbitrary
dependence, such as Copula [11] and total correlation [12]. However,
the complexity of using Copula is exponentially related to the
number of random variables. Mutual information [12] and total
correlation [12] measure the dependence between random variables,
however, it is not easy to apply them in the statistical analysis.
Moreover, there is little work in removing dependence using such
measures as is readily done using PCA for linear correlation.

There exists some nonlinear algorithms to decompose nonlinear
dependent variation sources to independent components, such as
nonlinear PCA [13] (or Kernel PCA) and nonlinear ICA [14]. Applying
such algorithms may completely (or almost completely) remove
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E½X1 � X2� ¼ E½X1� � E½X2�. The linear correlation measures how likely one random
variable may increase when the other one increases.

2 The mutual information between two random variables X1 and X2, IðX1 ;X2Þ, are
defined as IðX1 ;X2Þ ¼∬1

�1f 12ðx1 ; x2Þ � log ðf 12ðx1 ; x2Þ=f 1ðx1Þ � f 2ðx2ÞÞ dx1 dx2, where
f 1ðx1Þ and f 2ðx2Þ are the marginal probability density function (PDF) of X1 and X2,
respectively and f 12ðx1; x2Þ are the joint PDF of X1 and X2. IðX1 ;X2Þ measures the
dependence between X1 and X2, IðX1;X2Þ ¼ 0 if and only if X1 and X2 are independent.
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dependence between variation sources and results in independent
components. However, such algorithms either express the variation
sources as a very complicate function of independent components
or do not give close form expressions to express variation source
using independent components. Hence, such nonlinear transforma-
tions are not easy to use in statistical analysis and optimization.

Compared to the previous work [15], we analyzed the impact of
nonlinear dependence on statistical analysis and evaluated the
performance of the algorithm with more experiments in this
paper. In sum, key contributions of this work are as follows:

� We propose polynomial correlation coefficients as a simple
measure of non-linear dependence among random variables.

� We show that the importance of modeling non-linear depen-
dence strongly depends on what is to be done with the random
variables, i.e., the end function of random variables that is to be
estimated.

� We develop closed form expressions to calculate error in the
estimation of arbitrary moments (e.g., mean, variance, skew-
ness) of the to-be estimated function as a result of assuming
true independence of components generated by PCA or ICA
techniques.

� We develop a target function driven component analysis
algorithm (we refer to as FCA) which minimizes the error
caused by ignoring non-linear dependence without increasing
the computational complexity of statistical analysis.

The methods developed in this paper can be used to check
whether linear de-correlation techniques like PCA will suffice for
particular analysis problem. To the best of our knowledge, this is
the first work to propose a systematic method to evaluate the need
for complex non-linear dependence modeling for statistical ana-
lysis in VLSI design or otherwise. We apply our error estimation
formula to the typical examples from computer aided VLSI design:
statistical timing and leakage analysis. Experimental result shows
that our estimation is within 1% error of simulation. Further we
give two example applications of FCA algorithm: statistical leakage
analysis and SRAM cell noise margin variation analysis. The
experimental results show that the FCA is more accurate than
regular PCA or ICA.

The rest of the paper is organized as follows: Section 3
theoretically calculates the impact of high order correlation,
Section 4 applies the formula to statistical timing and leakage
analysis and presents some experimental results, finally Section 5
presents the target function driven ICA algorithm to minimize the
error caused by ignoring non-linear dependence and Section 6
concludes this paper.

2. Motivation and preliminaries

In this section, we show the limitations of using PCA and ICA to
obtain independent random variables and propose the polynomial
correlation measure.

PCA can only remove linear correlation between random variables
but cannot remove the high order dependence. Independent random
variables must be uncorrelated, but uncorrelated random variables are
not necessarily independent. If we assume that the uncorrelated
random variables are independent (as is done by most VLSI statistical
analysis techniques), errors in the statistical calculations can be
significantly large. Consider the following simple example. Let S1 and
S2 be two independent random variables with standard normal distri-
butions. Let X1 ¼ S1þS2, X2 ¼ S1S2. It is easy to find that X1 and X2 are
uncorrelated, but certainly not independent. Let f ðX1;X2Þ ¼ X2

1þX1

X2þX2
1X

2
2þX2

2. We can see that in order to compute the mean of f ð�Þ,
not only the linear correlation but also the 4th order joint moments

between X1 and X2 should be considered. Theoretically, the mean of f
should be E½f � ¼ 9. However, if we ignore the dependence between X1
and X2 and assume that they are independent, then we would
calculate the mean of f as E½f � ¼ 5. From the above example, we can
see that ignoring high order dependence can cause large error even
when computing the mean. Moreover, notice that in the above
example, we know that variation source is a function of independent
random variables S1 and S2 (i.e., we know the mixing function).
However, in many real applications [16–19], this assumption does
not hold true, which makes the problem of higher order dependence
difficult to handle. ICA tries to minimize the mutual information
between the random variables.

When IðX1;X2Þ exists, X1 and X2 are independent if and only if
IðX1;X2Þ ¼ 0. Since it is still a linear operation, it cannot completely
remove the dependence between random variables. Let us observe
another simple example: let S1 and S2 be two independent random
variables with standard normal distribution and X1 ¼ S1þS2,
X2 ¼ S1S2. Then there will be no linear operations to decompose
X1 and X2 to independent random variables.

3. Analysis of impact of nonlinear dependence

As discussed above, commonly used PCA and ICA techniques
cannot provide fully independent random variable decomposition.
In this section, we are going to study the impact of non-linear
dependence on statistical analysis. We define the ijth order
polynomial correlation coefficient between two random variables
X1 and X2 as

ρij ¼
E½Xi

1X
j
2��E½Xi

1�E½Xj
2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðXi
1�E½Xi

1�Þ2� � E½ðXj
2�E½Xj

2�Þ2�
q : ð1Þ

ρij's provide us with simple and good measures to estimate the
impact of nonlinear dependence. Note that �1rρijr1 and that
ρ11 is simply the linear correlation coefficient. In rest of this paper,
we assume that the ρij's are known. In practice, ρij can be
computed from the samples of variation sources.

With the above definition, we will show how to evaluate the
impact of non-linear dependence on statistical analysis. Let us
consider the two random variable case first. Let f be a polynomial
function (or Taylor expansion of an arbitrary function) of two
random variables X ¼ ðX1;X2ÞT :

f ðXÞ ¼∑
ij
aijX

i
1X

j
2: ð2Þ

Then

E½f ðXÞ� ¼∑
ij
aijmij; ð3Þ

where mij ¼ E½Xi
1 � Xj

2� is the ijth joint moment of X1 and X2. If we
ignore mij, then the error of mean estimation will be
ai;jðmi;j�mi;0m0;jÞ. That is, the importance of the ijth joint moment
depends on the coefficient of the ijth joint moment in the Taylor
expansion, ai;j and mi;j�mi;0m0;j. We define

Qij ¼ ai;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2i;0 �m0;2j

p
: ð4Þ

Then the mean can be expressed as

E½f ðX1;X2Þ� ¼∑
ij
ρi;j � Qi;j; ð5Þ

where ρi;j is the ijth order polynomial correlation coefficient
between X1 and X2 as defined in (1). From the above equation, we
find that the importance of the ijth order dependence depends on
Qi;j. The above equations illustrate the two random variable case.

In practice, principal component analysis (PCA) or independent
component analysis (ICA) is used to obtain principal components
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or independent components, respectively. Assume that

P ¼ ðP1; P2ÞT ¼W � X ð6Þ
are the principal components (or independent components)
obtained from PCA [20], where W is the transform matrix. Then
the function f can be written as the function of P1 and P2:

f ðXÞ ¼ f ðW �1 � PÞ ¼∑
ij
cijP

i
1P

j
2: ð7Þ

Because P is a linear combination of X, it is easy to obtain the
coefficients cij, from aij and the transform matrix W.

In practice, when high order dependence exists, P1 and P2 are
not completely independent. In this section, we try to estimate the
error caused by ignoring the high order dependence. We focus on
mean, variance, and skewness calculation.

We express mean of f as

E½f ðXÞ� ¼ f ðW �1 � PÞ ¼∑
ij
ρp;i;j � Tμi;j

¼∑
ij
cijP

i
1P

j
2

¼∑
ij
ρp;i;j � Tμi;j;

Tμi;j ¼ ci;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mP

2i;0 �mP
0;2j

q
; ð8Þ

where mP
ij is the ijth joint moment of P1 and P2, and ρP

ij is the ijth
order correlation coefficient between P1 and P2. Since P is a linear
combination of X, it is easy to obtain joint moments mP

ij and
correlation coefficients ρPij can be easily calculated from the
moments of Xi's mij and the transform matrix W. If we assume
that these components are independent, i.e., we assume all the ρP

ij

to be zero, then total error in mean estimation is

Δμ ¼ ∑
iZ1;jZ1

ρP
ij � Tμi;j: ð9Þ

Similar to the estimation of the error in mean, we may estimate
the error in variance calculation. We first estimate the error of
second order raw moment of f ð�Þ. f 2ð�Þ can be expressed as a
polynomial function of Pi's as

f 2ðP1; P2Þ ¼∑
ij
dijP

i
1P

j
2; ð10Þ

where the coefficients dij can be calculated from cij's. Then we may
estimate the error of the second order raw moment of f ð�Þ
Δ2 ¼ E½f 2��E½f 02� ¼ ∑

iZ1;jZ1
ρP
ij � Tsi;j; ð11Þ

Tsi;j ¼ di;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2i;0 �m0;2j

p
; ð12Þ

where f 0 is the function ignoring the dependence. Then the error
of variance calculation if high order dependence is ignored is

Δs2 ¼Δ2�2μ0Δμ�Δ2
μ

¼ s2
f �s2

f 0

¼ E½f 2��ðE½f �Þ2�E½f 02�þðE½f 0�Þ2

¼Δ2�2μ0Δμ�Δ2
μ; ð13Þ

where μ0 is the mean calculated by ignoring the high order
dependence and Δμ is the error of mean calculation which is
calculated in (9). In practice Δμ is much smaller compared to μ0,
therefore, we have

Δs2 �Δ2�2μ0Δμ: ð14Þ
With the error of variance, we may also calculate the error of

standard deviation:

Δs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s02þΔs2

q
�s0 �Δs2

2s0 : ð15Þ

Besides mean and variance, skewness is also an important
characteristic of statistical distributions. In order to estimate the
error of skewness calculation, we first estimate the error of the
third order raw moment Δ3 in a similar way to

Δ3 ¼ E½f 3��E½f 03� ¼ ∑
iZ1;jZ1

ρP
ij � Tγij; ð16Þ

Tγij ¼ uij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2i;0 �m0;2j

p
; ð17Þ

where the coefficients uij can be calculated from cij. Then the error
of skewness can be calculated as

Δγ ¼
E½f 03�þΔ3

ðs0 þΔsÞ3
�E½f 03�

s03 � Δ3

s03: ð18Þ

4. Case study of statistical leakage and timing analysis

Statistical analysis is widely used in integrated circuit design. In
the section, we apply our error estimation techniques on the
statistical timing and leakage power analysis.

4.1. Statistical leakage analysis

4.1.1. Single cell leakage
Generally, the leakage variation of a single cell is expressed as

an exponential function of variation sources [21,8,7]

Pleak ¼ P0 � ec11X1 þ c12X
2
1 þ c21X2 þ c22X

2
2 ; ð19Þ

where X1 and X2 are the variation sources, P0 is the nominal
leakage value, cij's are the sensitivity coefficients for variation
sources X1 and X2, respectively. Performing Nth order Taylor
expansion to the above equation, we have

Pleak ¼ P0 ∑
1

i;j ¼ 0
ai;jX

i
1X

j
2

� P0 ∑
N

i;j ¼ 0
ai;jX

i
1X

j
2: ð20Þ

Now we have the to-be estimated function in a polynomial form of
variation sources. Then we may apply the method in Section 3 to
estimate the error of mean, variance, and skewness when ignoring
the high order dependence.

4.1.2. Full chip leakage
Full chip leakage power is calculated as

Pchipleak ¼ ∑
rAC

Pr
leak � ∑

N

i;j ¼ 0
qi;jX

i
1X

j
2; ð21Þ

qi;j ¼ ∑
rAC

ari;j; ð22Þ

where C is the set of all circuit elements in the chip and ari;j is the
ijth order coefficient for the rth circuit element. From the above
equation, we can see that the full chip leakage can be expressed as
the Taylor expansion of the variation sources. Therefore, we may
estimate the error of mean, variance, and skewness calculation as
mentioned previously.

4.2. Statistical timing analysis

Next, we calculate the error in statistical timing analysis.
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4.2.1. Gate delay
The delay of a single gate is usually expressed as a quadratic

function of variation sources [4,22–28]

D¼ a11X
2
1þa22X

2
2þ2a12X1X2þb1X1þb2X2þd0: ð23Þ

A¼ ðaijÞ is the matrix of the second-order sensitivity coefficients of
delay with respect to the variation sources, B¼ ðbiÞ is the vector of
the linear delay sensitivity coefficients, and d0 is the nominal
delay. We can apply the method in Section 3 to estimate the error
of mean, variance, and skewness variation.

From the above equation, we see that the mean of delay
variation is affected by the linear correlation between Xi's and
does not depend on the high order joint moments. However, the
delay variance and skewness are affected by high order covar-
iances. This is because D is a quadratic function of Xi's, then the
variance is a 4th order polynomial and the skewness is a 6th order
polynomial of Xi's.

4.2.2. Full chip statistical static timing analysis (SSTA)
Due to many works on SSTA making a generic analysis of errors

is difficult. For block based SSTA, there are two major operations,
MAX and ADD. The ADD operation is straightforward because we
may obtain the coefficients of the sum Ds ¼D1þD2 by adding up
the coefficients of D1 and D2.

For the MAX operation, the problem is more involved because
there is no closed-form expression for the max of two random
variables. There are several algorithms to approximate the MAX
operation. The error of the MAX operation depends on which
algorithm we use. As an example, we consider a commonly used
algorithm namely, moment matching [23,27,28]. In the moment
matching technique, to compute the max of two delay value
Dm ¼maxðD1;D2Þ with the second order canonical form similar
to (23)

Dm ¼ am11X
2
1þam22X

2
2þ2am12X1X2þbm1X1þbm2X2þdm0: ð24Þ

The joint moments between variation sources and the max,
E½XimaxðD1;D2Þ�, are first computed and MAX is expressed in the
second order canonical form

E½Dm� ¼ am22m20þ2am12m11þam11m02þbm1m10þbm2m01þdm0;

E½X1 � Dm� ¼ am22m30þ2am12m21þam11m12þbm1m20

þbm2m11þdm0m10;

E½X2 � Dm� ¼ am22m21þ2am12m12þam11m03þbm1m11

þbm2m02þdm0m01;

E½X2
1 � Dm� ¼ am22m40þ2am12m31þam11m22þbm1m30

þbm2m21þdm0m20;

E½X2
2 � Dm� ¼ am22m22þ2am12m13þam11m04þbm1m12

þbm2m03þdm0m02;

E½X1X2 � Dm� ¼ am22m31þ2am12m22þam11m13þbm1m21

þbm2m12þdm0m11: ð25Þ
These equations are solved to obtain the coefficients amij and bmij

for Dm. Notice that the above equations contain the high order
joint moments between X1 and X2, if the high order dependence is
ignored, there will be error in the coefficients amij and bmij. In order
to estimate the error, we may use the correct dependence to
compute the correct amij and bmij and then compare to those
calculated by ignoring the high order dependence.

4.3. Experiments

In this section, we show experimental results on some small
benchmark circuits to validate our estimation techniques.

4.3.1. Dependent variation sources generation
In our experiment, we assume two variation sources: effective

channel length Leff and threshold voltage Vth. Since these two
variation sources are dependent, to generate the dependent
variation sample, we assume that the variation of gate length Lgate
and dopant density Nbulk are independent.3 We first generate
samples of Lgate and Nbulk then we use ITRS 2005 MASTAR4 (Model
for Assessment of CMOS Technologies And Roadmaps) tool [29–31]
to obtain dependent samples of Leff and Vth from the samples of
Lgate and Nbulk. By applying PCA (or ICA) to the samples of Leff and
Vth, we obtain the marginal distribution for each principal compo-
nent (or independent component).

In the experiment, we use the samples of Leff and Vth with the
exact dependence to perform SPICE Monte-Carlo simulation to
calculate the exact distribution of leakage power (or delay), which
is the golden result for comparison. We also assume each principal
component (or independent component) from PCA (or ICA) to be
independent. Then we calculate the leakage power (or delay)
under such assumption and compare the result to that of the
Golden case.

4.3.2. Experimental results
In our experiments, for Lgate and Nbulk, we assume a Gaussian

distribution with 3s of 5% of the nominal value. We use 10,000
Monte-Carlo simulations to calculate the golden case leakage
power. For SPICE Monte-Carlo simulation, we assume BPTM
45 nm technology. Moreover, in our experiment, we only consider
inter-die variation.

Table 1 illustrates the mean, standard deviation, and skewness
of different cell delays. In the table, we compare the result of
Monte-Carlo (MC) simulation, the result after fitting (after fitting),
and result after applying PCA (PCA). Then we calculate the error
caused by curve fitting (fitting error), the error when ignoring the
nonlinear dependence (PCA error), and the error predicted by our
algorithm above (predicted error). In the table, we also compare
the result for two different delay (leakage) models, linear model
(Lin) and quadratic delay (leakage) model (Quad). For the linear
leakage model, we just fit the leakage power as the exponential of
the linear function of variation sources, that is, not the square term
in the power in (19). For the linear delay model, we just fit the gate
delay as a linear function of variation sources, that is, no second
order terms in (23).

From the table, we see that, as expected, the linear delay model
leads to larger fitting error but almost does not depend on high
order correlation. However, the quadratic delay model has smaller
fitting error, but there is error (about 5%) of standard deviation if
we ignore the non-linear correlation. Moreover, we see that error
predicted by our algorithm (predicted error) is very close to the
experimental result (PCA error). Table 2 illustrates the mean,
standard deviation, and skewness of different cell leakage power.
From the table, we can find a similar trend as delay except that in
both linear and quadratic delay models, ignoring high order
dependence may cause error in both mean and standard deviation.

We also show some full chip delay and leakage analysis for few
ISCAS85 benchmarks in Tables 3 and 4. In the tables, we compare
the result of Monte-Carlo (MC) simulation, the result of SSTA
(SSTA) or statistical leakage analysis (stat leak), and delay after
applying PCA (PCA). Then we calculate the error of SSTA (SSTA
error) or statistical leakage analysis (stat leak error), the error
when ignoring the nonlinear dependence (PCA error), and the

3 Notice that in practice, Lgate and Nbulk cannot be easily measured in silicon.
The only parameters we can measure is Leff and Vth. That is, we can only extract the
dependence between Leff and Vth from the measured samples without knowing the
exact variation of Lgate and Nbulk.
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Table 1
Cell delay.

Gate Fitting type MC After fitting

μ 3s γ μ 3s γ

Inv Lin 5.12 1.12 0.12 5.10 1.03 0.10
Quad 5.12 1.12 0.12 5.14 1.14 0.12

Nand Lin 9.29 1.95 0.14 9.20 1.84 0.11
Quad 9.29 1.95 0.14 9.33 1.98 0.15

Nor Lin 12.32 2.78 0.14 12.12 2.52 0.12
Quad 12.32 2.78 0.14 12.38 2.85 0.14

Gate Fitting type PCA Fitting error

μ 3s γ μ 3s γ

Inv Lin 5.09 1.02 0.10 �0.03 �0.09 �0.02
Quad 5.15 1.02 0.11 0.02 0.02 0

Nand Lin 9.18 1.82 0.11 �0.09 �0.11 �0.03
Quad 9.36 1.89 0.13 0.04 0.03 0.01

Nor Lin 12.11 2.51 0.12 �0.20 �0.22 �0.02
Quad 12.41 2.69 0.13 0.06 0.07 0

Gate Fitting type PCA error Predicted error

μ 3s γ μ 3s γ

Inv Lin �0.01 �0.01 0 0 0 0
Quad 0.01 �0.12 �0.01 0 �0.10 �0.01

Nand Lin �0.02 �0.02 0 0 0 0
Quad 0.03 �0.09 �0.02 0 �0.11 �0.02

Nor Lin �0.01 �0.01 0 0 0 0
Quad 0.03 �0.16 �0.01 0 �0.14 �0.01

Note:delay value is in ps.

Table 2
Cell leakage.

Gate Fitting type MC After fitting

μ 3s γ μ 3s γ

Inv Lin 7.12 2.55 0.35 6.44 2.13 0.31
Quad 7.12 2.55 0.35 7.15 2.61 0.36

Nand Lin 11.28 3.84 0.34 10.18 3.19 0.31
Quad 11.28 3.84 0.34 11.69 4.09 0.35

Nor Lin 17.18 4.82 0.30 15.91 4.08 0.27
Quad 17.18 4.82 0.30 17.72 5.13 0.32

Gate Fitting type PCA Fitting error

μ 3s γ μ 3s γ

Inv Lin 6.32 2.02 0.27 �0.68 �0.42 �0.04
Quad 7.05 2.49 0.31 0.03 0.06 0.01

Nand Lin 9.97 3.01 0.27 �1.10 �0.65 �0.03
Quad 11.34 3.91 0.31 0.41 0.25 0.01

Nor Lin 15.69 3.94 0.24 �1.27 �0.74 �0.03
Quad 17.42 4.96 0.28 0.54 0.31 0.02

Gate Fitting type PCA error Predicted error

μ 3s γ μ 3s γ

Inv Lin �0.08 �0.11 �0.04 �0.11 �0.13 �0.03
Quad �0.10 �0.12 �0.05 �0.12 �0.14 �0.04

Nand Lin �0.21 �0.18 �0.04 �0.19 �0.16 �0.03
Quad �0.35 �0.18 �0.04 �0.30 �0.17 �0.04

Nor Lin �0.22 �0.14 �0.03 �0.19 �0.16 �0.03
Quad �0.30 �0.17 �0.04 �0.31 �0.19 �0.05

Note:leakage value is in nW.
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error predicted by our algorithm (predicted error). Notice that
SSTA error and the statistical leakage analysis error are caused by
both curve fitting and analysis algorithm. Similar to the single gate
case, we see that error predicted by our algorithm (predicted
error) is very accurate compared to the experimental result (PCA
error). From the tables, we see that the error caused by non-linear
dependence is not significant in the ISCAS85 circuit bench.4

5. Target function driven component analysis

In the previous section, we introduced the method to estimate
the error caused by ignoring non-linear dependence and showed
that it depends on the target function being estimated. As discus-
sed in Section 1, linear operations cannot completely remove the

dependence between variation sources. However, due to simplicity
of application, linear operation is preferred. Therefore, in this section,
we try to find an optimum linear transform to minimize the error of
ignoring the non-linear dependence. The proposed algorithm, func-
tion driven component analysis (FCA), decomposes dependent varia-
tion sources into components so as to minimize error in the
estimation of certain statistical measures of the target function.

In the rest of this section, we first present our algorithm and
then apply it to statistical leakage analysis and SRAM cell noise
margin variation analysis. Note that the method can also be applied
to the variation analysis of emerging memory technologies, such as
STT-RAM.

5.1. FCA algorithm

Let f(X) be a polynomial function (or Taylor expansion of
an arbitrary function) of an n-dimensional random vector X ¼
ðX1;X2;…XnÞT . The objective of the FCA is to find an n�n transfer
matrix W and independent components P ¼ ðP1; P2;…; PnÞ ¼W � X

Table 3
Chip delay.

Bench mark SSTA type MC SSTA

μ 3s γ μ 3s γ

C17 Lin 42.2 14.7 0.10 41.3 13.9 0.09
Quad 42.2 14.7 0.10 42.7 15.2 0.12

C499 Lin 320.2 105.5 0.14 318.2 102.9 0.13
0 0 �0.01

Quad 320.2 105.5 0.14 321.1 106.2 0.15

C880 Lin 674.4 221.3 0.12 671.2 215.2 0.11
Quad 674.4 221.3 0.12 679.5 227.2 0.14

C3540 Lin 1241.2 413.2 0.13 1237.1 410.1 0.12
Quad 1241.2 413.2 0.13 1249.7 420.2 0.15

C7522 Lin 1919.3 635.4 0.13 1911.3 631.2 0.11
Quad 1919.3 635.4 0.12 1931.2 638.9 0.13

Bench mark SSTA type PCA SSTA error

μ 3s γ μ 3s γ

C17 Lin 41.2 13.8 0.09 �0.9 �0.8 �0.01
Quad 42.0 15.0 0.11 0.5 0.5 0.02

C499 Lin 317.9 102.6 0.12 �2.0 �2.6 �0.01
Quad 319.2 104.9 0.13 0.9 0.7 0.01

C880 Lin 671.5 214.8 0.11 �3.2 �6.1 �0.01
Quad 676.7 225.3 0.13 5.1 5.9 0.2

C3540 Lin 1236.5 409.7 0.11 �4.1 �3.1 �0.01
Quad 1247.1 418.2 0.13 8.5 7.0 0.2

C7522 Lin 1907.1 631.9 0.12 �8.0 �4.2 �0.02
Quad 1929.4 639.5 0.13 11.1 3.5 0.01

Bench mark SSTA type PCA error Predicted error

μ 3s γ μ 3s γ

C17 Lin �0.1 �0.1 0 0 0 �0.01
Quad �0.7 �0.2 �0.01 �0.6 �0.2 �0.01

C499 Lin �0.3 �0.3 �0.01 0 0 �0.01
Quad �1.9 �1.3 �0.02 �2.1 �1.1 �0.02

C880 Lin 0.3 �0.4 0 0 �0 �0.0
Quad �2.8 �1.9 �0.01 �2.9 �1.8 �0.01

C3540 Lin �0.6 �0.4 �0.01 �0.5 �0.5 �0.01
Quad �2.6 �2.0 �0.02 �2.7 �1.9 �0.01

C7522 Lin �3.2 0.7 0.01 �2.9 0.6 0.01
Quad �1.8 0.6 0.00 �1.7 0.5 0.01

Note:delay value is in ps.

4 Especially for statistical timing analysis in this experiment, such error is less
than 2%.
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to minimize the error of f(WP) when assuming that all Pi's are
independent. In statistical analysis, the error of f(WP) is usually
measured by mean, variance, and skewness. In this work, we
consider the first-order analysis by matching the mean of f(X).
Those are

W ¼ arg
Δμ ¼ 0

min Δ; ð26Þ

Δ¼ΔsþεΔγ ; ð27Þ

Δμ ¼ μf �μf 0 ; ð28Þ

Δs ¼sf �sf 0 ; ð29Þ

Δγ ¼ γf �γf 0 ; ð30Þ

where μf, sf, and γf are the mean, standard deviation, and
skewness of f(X), respectively; μf 0 , sf 0 , and γf 0 are the mean,
standard deviation, and skewness of f(WP) when assuming that

all Pi's are independent; ε is the weight factor for the skewness
error. Since f(X) is a polynomial function of X, similar to (9), (15),
and (18), μf, sf, and γf can be expressed as a function of joint
moments of Xi's, which are known; and μf 0 , sf 0 , and γf 0 can be
expressed as a function of joint moments of Pi's. Considering
P¼WX, the joint moments of Pi's can be expressed as functions of
W and the joint moments of Xi's. Hence, the error Δ can be
expressed as a function of W and joint moments of Xi's. Therefore
(26) becomes a non-linear programming problem. We use a non-
linear programming solver to obtain the transfer matrix W.

A more general objective is5

W ¼ arg minðΔμþε1Δsþε2ΔγÞ:

Unlike the regular PCA or ICA, our FCA algorithm presented
above tries to minimize the error for a target function f. That is, for
different target function f, we may have different transfer matrix

Table 4
Chip leakage. Note: leakage value is in μW for C17, and in mW for others.

Gate Fitting type MC Stat leak

μ 3s γ μ 3s γ

C17 Lin 430.2 120.3 0.28 415.3 113.3 0.25
Quad 430.2 120.3 0.28 437.2 126.3 0.32

C499 Lin 9.14 3.21 0.32 8.54 2.92 0.29
Quad 9.14 3.21 0.32 9.45 3.58 0.35

C880 Lin 22.3 7.58 0.34 20.2 6.95 0.29
Quad 22.3 7.58 0.34 23.8 7.92 0.39

C3540 Lin 89.2 29.23 0.41 84.5 27.78 0.39
Quad 89.2 29.23 0.41 92.5 30.29 0.43

C7522 Lin 162.2 56.21 0.38 155.3 55.51 0.35
Quad 162.2 56.21 0.38 170.1 57.11 0.40

Gate Fitting type PCA Stat Leak error

μ 3s γ μ 3s γ

C17 Lin 413.2 109.2 0.23 �14.9 �7.0 �0.03
Quad 431.5 122.2 0.30 7.0 6.0 0.02

C499 Lin 8.32 2.79 0.27 �0.60 �0.29 �0.03
Quad 9.21 3.40 0.33 0.41 0.37 0.03

C880 Lin 19.1 6.63 0.26 �2.1 �0.63 �0.05
Quad 23.3 7.76 0.37 1.5 0.34 0.05

C3540 Lin 82.1 27.15 0.37 �4.7 �1.45 �0.02
Quad 90.7 30.01 0.42 3.3 1.04 0.02

C7522 Lin 152.1 55.13 0.31 �6.9 �0.80 �0.03
Quad 168.2 56.72 0.39 7.9 0.90 0.02

Gate Fitting type PCA error Predicted error

μ 3s γ μ 3s γ

C17 Lin �2.1 �4.1 �0.02 �2.3 �3.9 �0.02
Quad �5.7 �4.1 �0.02 �5.3 �3.8 �0.03

C499 Lin �0.22 �0.13 �0.02 �0.19 �0.12 �0.02
Quad �0.24 �0.18 �0.02 �0.28 �0.17 �0.02

C880 Lin �1.1 �0.32 �0.03 �0.9 �0.36 �0.02
Quad �0.5 �0.16 �0.02 �0.4 �0.18 �0.02

C3540 Lin �2.4 �0.53 �0.02 �2.2 �0.59 �0.02
Quad �1.8 �0.28 �0.01 �1.5 �0.27 �0.01

C7522 Lin �3.2 �0.38 �0.04 �2.9 �0.36 �0.03
Quad �1.9 �0.39 �0.01 �1.7 �0.37 �0.01

Note:leakage value is in μW for C17, and in mW for others.

5 This is especially useful in cases where μ¼ 0 has no solution.
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W. In FCA, we need to obtain an n�n transfer matrix W, that is, we
need to solve a n2 variable non-linear programming problem.
However, for any statistical analysis, FCA needs to be run only
once. Moreover, FCA still uses linear operation to decompose the
variation sources. Therefore, applying FCA does not increase the
computational complexity of the statistical analysis compared to
regular PCA or ICA.

In order to validate our algorithm, let us first take a look at the
simple example we introduced in Section 1: let S1 and S2 be two
independent random variables with standard normal distributions
and X1 ¼ S1þS2, X2 ¼ S1S2. Estimate the mean of f ðX1;X2Þ ¼
X2
1þX1X2þX2

1X
2
2þX2

2. As discussed in Section 1, the correct value
is E½f ð�Þ� ¼ 9. If we apply PCA, because X1 and X2 are uncorrelated,
they are just principal components. If we assume that principal
components X1 and X2 are independent, we have E½f ð�Þ� ¼ 5. If we
apply fast kernel ICA [32] to obtain independent components, we
will have E½f ð�Þ� ¼ 5:78. If we use FCA, we have E½f ð�Þ� ¼ 8:54. That is,
FCA works better than PCA and ICA.

5.2. Experimental results

In this section, we show some examples to validate the FCA
algorithm. As discussed in Section 4.3, non-linear dependence
does not have significant impact on statistical timing analysis. In
this section we show three examples of FCA in VLSI design:
statistical leakage analysis, differential Opamp amplitude, and
SRAM noise margin variation analysis.

5.2.1. Statistical leakage analysis
We first discuss statistical leakage analysis. Similar to Section

4.3, we assume two variation sources, effective Leff and Vth and we
only consider inter-die variation for the variation sources. We
generate dependent variation samples of Leff and Vth in the same
way as Section 4.3.1. With the dependent samples, we use FCA
(PCA or ICA) to decompose the variation sources and obtain the
marginal distribution of each component. Then we generate
sample of each component according to its marginal distribution.
Assuming that the components are independent, we generate the
samples of Leff and Vth. Finally, we use these samples to run SPICE
Monte-Carlo simulation to obtain leakage power. We use BPTM
45 nm technology in the experiment and assume supply voltage to
be 1.0 V. For Lgate and Nbulk, we assume that they follow Gaussian
distribution and the 3-sigma value is 5% of the nominal value.

In order to validate the accuracy of FCA we define three
comparison cases: (1) samples generated from Mastar4 with the
exact dependence, which is the golden case for comparison,
(2) samples generated from PCA, and (3) samples generated from
fast kernel ICA [32].

Table 5 illustrates the mean, standard deviation, skewness, 90%,
95%, and 99% percentile point of leakage of different logic cells.
From the table, we see that the value obtained from FCA is closer to
the exact value than PCA and ICA.6 Table 6 illustrates the leakage
comparison for full chip leakage power analysis. For full chip
leakage power analysis, FCA may give out different decomposition
matrices for different cells. In this experiment, we apply the
decomposition matrix obtained from the inverter for all logic cells
in the chip. From the table, we see that even FCA works well in full
chip leakage analysis.

Table 7 illustrates the exact error and the estimated error
(using the method in Section 4) of mean, standard deviation,
and skewness for logic cells. From the table, we can find that the

estimated error is close to the exact error and that FCA has a lower
error than PCA or ICA.

5.2.2. Differential amplifier analysis
The second application example for FCA is the simple one stage

differential operation amplifier amplitude. We use the same device
setting as the statistical leakage analysis in Section 5.2.1. The only
difference is that in this experiment, we consider the mismatch
of Leff and Vth of the two input transistors. We assume that the
3-sigma of both mismatch variation is 5% of the nominal value.

Table 8 illustrates the mean, standard deviation, skewness, 90%,
95%, and 99% percentile point of amplitude of the Opamp. From the
table, we see that the value obtained from FCA is closer to the exact

Table 6
Chip leakage power comparison.

Gate μ 3s γ 90% 95% 99%

C17
Exact 437.2 126.3 0.32 612.4 675.3 721.5
PCA 431.5 122.2 0.30 592.8 653.5 701.8
ICA 432.8 123.5 0.30 599.2 654.4 704.6
FCA 437.3 124.9 0.31 604.2 664.3 711.2

C499
Exact 9.45 3.58 0.35 10.31 11.15 12.01
PCA 9.21 3.40 0.33 10.02 10.98 11.78
ICA 9.25 3.45 0.34 10.12 11.01 11.81
FCA 9.44 3.51 0.35 10.16 11.06 11.91

C880
Exact 23.8 7.92 0.39 26.11 29.15 31.31
PCA 23.3 7.76 0.37 25.56 28.41 29.10
ICA 23.2 7.72 0.38 25.32 28.35 29.01
FCA 23.9 7.81 0.38 25.74 28.67 29.65

C3540
Exact 92.5 30.29 0.43 107.2 119.5 131.2
PCA 90.7 30.01 0.42 103.1 114.3 124.6
ICA 90.9 30.12 0.42 104.1 116.3 125.6
FCA 92.1 30.13 0.42 105.6 116.9 128.4

C7522
Exact 170.1 57.11 0.40 193.3 218.6 231.2
PCA 168.2 56.72 0.39 184.6 209.3 221.5
ICA 167.9 56.81 0.39 185.2 211.3 223.3
FCA 169.7 56.86 0.40 187.1 213.5 225.9

Note:leakage value is in.μW for C17, and in mW for others.

Table 5
Logic cell leakage power comparison.

Gate μ 3s γ 90% 95% 99%

INV
Exact 7.15 2.61 0.36 10.12 10.75 11.37
PCA 7.05 2.49 0.31 9.85 10.34 11.01
ICA 7.07 2.47 0.32 9.91 10.41 11.09
FCA 7.10 2.56 0.34 10.02 10.59 11.21

NAND
Exact 11.69 4.09 0.35 15.95 16.82 17.76
PCA 11.34 3.91 0.31 15.51 16.41 17.41
ICA 11.32 3.93 0.34 15.60 16.45 17.50
FCA 11.68 4.05 0.35 15.83 16.68 17.62

NOR
Exact 17.72 5.13 0.32 23.89 24.95 26.11
PCA 17.42 4.96 0.28 23.44 24.61 25.94
ICA 17.51 5.01 0.30 23.51 24.64 25.99
FCA 17.71 5.09 0.31 23.74 24.85 26.01

Note:leakage value is in nW.

6 The run time for PCA and ICA is less than 0.1 s, and the run time for FCA is
0.4 s. However, because FCA needs to be run only once in the statistical analysis,
such run time overhead is a non-issue.
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value than PCA and ICA, which is similar to the leakage power
variation analysis. In Table 9, we compare the exact error and the
error estimated by the method in Section 3. We also observe that
the estimated error is very close to the exact value as expected.

5.2.3. SRAM noise margin variation analysis
The third application example for FCA is the 6 T-SRAM cell

noise margin (SNM). We use similar setting to the statistical
leakage analysis in Section 5.2.1. In order to highlight the flexibility
of FCA, in this experiment, we consider only within-die variation.
That is, each transistor has its own variation. In practice, SNM is
mainly affected by within die variation of the 4 transistors which
make two inverters, and inter-die variation and variation of the
two pass-transistor has little impact on SNM. Therefore, in our
experiment, we only consider within-die variation for those
4 transistors. In this case, because we consider 4 transistors in
an SRAM cell, there are 8 variation sources in an SRAM (Leff and Vth

for all 4 transistors). Notice that PCA and ICA provide the same
transfer matrix for Leff and Vth for all transistors, however because
FCA tries to handle 8 variation sources together, it may provide
different transfer matrices for different transistors.

Table 10 illustrates the mean, standard deviation, skewness,
90%, 95%, and 99% percentile point of noise margin of an SRAM.
From the table, we find that the value obtained from FCA is closer
to the exact value than PCA and ICA. Table 11 compares the exact

error and the error estimated by the method in Section 3. We also
find that the estimated error is very close to the exact value.

With noise margin variation analysis, we may further estimate
a number of redundant SRAM cells needed to ensure error correct
SRAM array. We assume that the variation of all SRAM cells in the

Table 8
Opamp amplitude comparison.

Name μ 3s γ 90% 95% 99%

Exact 742.4 65.0 0.96 682.2 646.3 712.8
PCA 749.7 61.4 0.84 687.4 648.6 615.3
ICA 748.0 62.1 0.85 686.2 648.7 615.2
FCA 743.7 62.6 0.88 685.9 647.7 615.0

Table 9
Estimated error for the Opamp amplitude.

Name Exact error Est error

μ 3s γ μ 3s γ

PCA 7.3 �3.4 �0.12 6.9 �3.3 �0.10
ICA 5.6 �2.9 �0.11 5.2 �3.1 �0.09
FCA 1.3 �2.4 �0.08 0 �2.1 �0.05

Table 10
SNM comparison.

Name Nominal value 0.1678

μ (mV) s (mV) γ 90% (mV) 95% (mV) 99% (mV)

Exact 148 29.4 0.091 105 84.4 65.5
PCA 141 30.7 0.077 107 89.2 69.0
ICA 140 30.3 0.079 109 88.4 68.1
FCA 147 28.9 0.094 106 85.8 67.2
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Fig. 1. Redundancy for Non-ECC scheme to achieve 99% yield rate.
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Fig. 2. SNM PDF comparison.

Table 7
Estimated error for the logic cell leakage power.

Gate Exact error Est error

μ 3s γ μ 3s γ

INV
PCA �0.10 �0.12 �0.05 �0.11 �0.14 �0.04
ICA �0.08 �0.14 �0.04 �0.10 �0.16 �0.04
FCA �0.05 �0.05 �0.02 0 �0.14 �0.03

NAND
PCA �0.35 �0.18 �0.04 �0.39 �0.17 �0.03
ICA �0.37 �0.16 �0.01 �0.34 �0.13 �0.02
FCA �0.01 �0.04 �0.00 0 �0.06 �0.01

NOR
PCA �0.30 �0.17 �0.04 �0.28 �0.19 �0.04
ICA �0.21 �0.12 �0.02 �0.24 �0.14 �0.03
FCA �0.01 �0.04 �0.01 0 �0.05 �0.02

Note:leakage value is in nW.

Table 11
Estimated error for the SNM variation analysis.

Name Exact error Est error

μ s γ μ s γ

PCA �4.7 1.3 �0.014 �4.9 1.2 �0.015
ICA �5.0 0.9 �0.012 �4.8 0.9 �0.014
FCA �1.4 �0.5 0.003 0.0 �0.4 0.005

Note:the error of μ and s is in mV.
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array are independent and an SRAM cell is faulty when the noise
margin is less than a cut off value. For non-ECC architecture, for
simplicity, we calculate the number of redundant SRAM cells
needed to achieve a certain percent yield. For the ECC scheme,
the number of redundant SRAM cells depends on the coding. For
simplicity, we estimate the Shannon Channel limit [33], which is
the lower bound of the redundancy required to achieve no error
coding.

Fig. 1 illustrates the percentage SRAM redundancy under
different cut off SNM values. In the figure, the x-axis is the cut
off SNM value, which is calculated as a certain percentage of the
nominal value (0.152 V). The y-axis is the percentage redundancy.
For the non-ECC scheme, we assume that the redundancy is to
achieve 99% yield rate.7 Fig. 2 compares the PDFs predicted by ICA,
PCA, and FCA to the exact PDF. From the figures, we see that FCA
predicts the redundancy more accurately than PCA or ICA.

We also ran experiments for different variation settings. In
stead of assuming Lgate and Nbulk to be Gaussian, we assume that
they follow skew-normal distribution with α¼ 10 [34]. Table 12

illustrates the mean, standard deviation, skewness, 90%, 95%, and
99% percentile point of noise margin of an SRAM under such
setting. Table 13 illustrates the estimated error for PCA, ICA, and
FCA when assuming that all variation sources follow skew-normal
distribution. Fig. 3 illustrates redundancy and Fig. 4 compares the
PDFs. From the table and figure, we find that FCA works better
than PCA and ICA under different variation settings.

6. Conclusion

In this paper, we have proposed the first method to estimate
the error of statistical analysis when ignoring the non-linear
dependence using polynomial correlation coefficients. Such a
method can be used to evaluate the accuracy of the linear de-
correlation techniques like PCA for a particular analysis problem.
As examples, we apply our technique to statistical timing and
power analysis. Experimental result shows that the error predicted
by our method is within 1% compared to the real simulation. We
have further proposed a novel target function driven component
analysis (FCA) algorithm to minimize the error caused by ignoring
high order dependence. We apply such a technique to two
applications of statistical analysis, statistical leakage power analy-
sis and SRAM cell noise margin variation analysis. Experimental
results show that the proposed FCA method is more accurate
compared to the traditional PCA or ICA. In the future work, we will
evaluate our work with larger-scale industrial circuits. Also, sparse
approximation based parameter estimation methods [35–37] will
be considered to reduce the need of measurements in the
statistical model.
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