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Abstract

SNePS, the Semantic Network Processing System, is a semantic network
language with facilities for building semantic networks to represent virtually
any kind of information, retrieving information from them, and performing
inference with them. Users can interact with SNePS in a variety of interface
languages, including a LISP-like user language, a menu-based screen-oriented
editor, a graphics-oriented editor, a higher-order-logic language, and an
extendible fragment of English.

This article discusses the svntax and semantics for SNePS considered as an
intensiona! knowledge representation sysiem and provides examples of uses of
SNePS for cognitive modelling, database management, patlern recognition, expert
systems, belief revision, and computational linguistics.



11 SNePS 263

11.1. Introduction

This chapter presents a formal syntax and semantics for
SNePS, the Semantic MNetwork Processing System (Shapiro,
1979b).3°  The syntax shows the emphasis placed on SNePS's
propositional nature. The semantics, which is based on Alexius
Meinong's theory of intentional objects (the objects of thought),
makes SNePS's fully intensional nature precise: as a fully
intensional theory, it avoids possible worlds and is appropriate
_ for Al considered as "computational philosophy" - Al as the
study of how intelligence is possible - or ‘“computational
psychology” - Al with the goal of writing programs as models
of human cognitive behavior. @ We also present a number of
recent Al research and applications projects that use SNePS,
concehtrating on one of these, a use of SNePS to model (or
construct) the mind of a cognitive agent, referred to as CASSIE
(the Cognitive Agent of the SNePS System-an Intelligent

Entity).

11.1.1. The SNePS environment

A semantic network is a data structure typically
consisting of labeled nodes and labeled, directed arcs. SNePS
can be viewed as a semantic network language with facilities

for

1. building semantic networks to represent virtually

3OThis research was supported in part by the National Science Foundation
under Grant No. IST-8504713 and SUNY Buffalo Research Development Fund
grants No. 150-9216-F and No. 150-8537-G (Rapaport), and in part by the Air
Force Systems Command, Rome Air Development Center, Griffiss Air Force
Base, NY 13441-5700, and the Air Force Office of Scientific Research, Bolling
AFB, DC 20332 under contract No. F30602-85-C-0008 (Shapiro). We wish to
thank Michael Almeida, James Geller, Jodo Martins, Jeannette Neal, Sargur
N. Srihari, Jennifer Suchin, and Zhigang Xiang for supplying us with
descriptions of their projects, and Randall R. Dipert, the members of SNeRG
(the SNePS Research Group), and three anonymous reviewers for comments and
discussion.
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any kind of information or knowledge.
2. retrieving information from them, and

3. performing inference with them, using SNIP (the
SNePS Inference Package) and path-based inference.

Users can interact with SNePS in a vai'iety of interface
languages, including: SNePSUL, a LISP-like SNePS User
Language; SENECA, a menu-based, screen-oriented editor;
GINSENG, a graphics-oriented editor; SNePSLOG. a higher-order-
logic language (in the sense in which PROLOG is a.first-order-
logic language) (McKay and Martins, 1981), (Shapiro, McKay,
Martins, and Morgado, 1981); and an extendible fragment of
English, wusing an ATN parsing and generaling grammar
(Shapiro, 1982). see Figure 11-1.
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SNePSLOG ATN
Figure 11-1:  SNePS, SNIP and Their User Interfaces.

SNePS, SNIP (the SNePS Interface Package) and their user
interfaces. When the arcs, case frames, and ATN grammar are
those of SNePS/CASSIE, then the system is being used to
model CASSIE. When the arcs are for the database (see
Section 11.4.1), then the system is being used as a database
management system, etc.
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SNePS is the descendent of SAMENLAQ (Shapiro.
Woodmansee, and Kreuger, 1968) (Shapiro and Woodmansee,
1969) and MENTAL (Shapiro, 1971b), (Shapiro. 1971c). It was
developed with the help of the SNePS Research Group at
Indiana University and at the University at Buffalo. The
current version is implemented in Franz LISP and runs on
VAX 11/750s and 780s in the Department of Computer Science
at Buffalo. An earlier version was implemented in ALISP on a
CDC Cyber 730; and an updated version is being implemented
in Common LISP on Symbolics LISP machines, Tl Explorers,
and a Tektronix 4406. There are additional installations at
other universities in the U.S. and Europe. '

11.1.2. SNePS as a knowledge representation system

Some researchers, for example., (Levesque and Brachman,
1985), view a knowledge representation (KR) system as a
subsystem that manages the knowledge base of a knowledge-
based system by storing information and answering questions.
In contrast, we view SNePS as the entire knowledge-based
system, interacting with a user/interlocutor through one.of its
interfaces. Of course, the user/interlocutor could be another
computer program using SNePS as a subsystem, but that is not
the way we use it. " '

A basic design goal of SNePS and its ancestors was to be
an environment within which KR experiments could be
performed, that is, to be a semantic network at the “logical"
level, 1o use Brachman's term (Brachman., 1979), see Section
11.5. below. This has been effected by providing a rather low
level interface, SNePSUL. Using SNePSUL, a KR designer can
specify a syntax: individual arc labels and sets of arc labels
(or case frames) that will be used to represent various objects
and information about them. It is also the designer’s obligation
to supply a semantics for these case frames. As is the case
for any provider of a language or ‘“shell", we cannot be
responsible for what use others make of the facilities we
provide. Nevertheless, we have our own preferred use.

In this chapter, we try to do two things. First, we try
to provide an understanding of SNePS and of some of the uses
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to which it has been put. Second, and most importantly, we
present our own preferred use: this is to use SNePS, with a
particular set of arc labels and case frames, and a particular
parsing/generating grammar for a fragment of English, as (a
model of) the cognitive agent, CASSIE. We shall refer to
SNePS with these arcs, case frames, and grammar as
SNePS/CASSIE. SNePS/CASSIE forms CASSIE's mind and
stands as our current theory of KR at the "conceptual’ level
(cf. Section 11.5, below, and (Brachman, 1979)). The purpose
of the central part of this paper is to present this theory by
explaining the entities represented by  structures: in
SNePS/CASSIE, by giving a formal syntax and semantics for
those structures, and by showing and explaining a sample
conversation with CASSIE. :

11.1.3. Informal description of SNePS

Regardless of the intentions of a KR-system designer,
SNePS, as a KR formalism, provides certain facilities and has
certain restrictions. The facilities (for example, for building,
finding, and deducing nodes) are best understood as those
provided by SNePSUL, but we shall not give a complete
description of SNePSUL here. [For an example, cf. Section
11.4.1, below; for details, see (Shapiro. 1979b).] The
restrictions, however, are important to understand, because they
distinguish SNePS from a general labelled, directed graph and
from many other semantic network formalisms.

SNePS is a propositional semantic network. By this is
meant that all information, including propositions, "facts”, etc.,

is represented by nodes. The benefit of representing
propositions by nodes is that propositions about propositions can
be represented with no limit. (In the formal syntax and

semantics given in Section 11.3, the propositions are the nodes
labelled 'm’ or r’.)

' Arcs merely form the underlying syntactic structure of
SNePS. This is embodied in the restriction that one cannot add
an arc between two existing nodes. That would be tantamount
to telling SNePS a proposition that is not represented as a
node. There are a few built-in arc labels, used mostly for
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rule nodes. Paths of arcs can also be defined, allowing for
path-based inference, including property inheritance  within
generalization hierarchies [see Section 11.3.4, below; cf. Shapiro
(Shapiro, 1978), (Srihari, 1981), and (Tranch, 1982).] All other
arc labels are defined by the user, typically at the beginning of
an interaction with SNePS, although new labels can be defined
at any time.

For purposes of reasoning, propositions that are asserted
in SNePS must be distinguished from those propositions that
are merely represented in SNePS but not asserted. This could
happen in the case of a proposition embedded in another (for
example, "Lucy is rich" embedded in "John believes that Lucy
is rich"). SNePS interprets a proposition node to be asserted if
and only if it has no arcs pointing to it.3!

Another restriction is the Uniqueness Principle: There is a
one-to-one correspondence between nodes and represented
concepts. This principle guarantees that nodes will be shared
whenever possible and that nodes represent intensional objects.32
We next consider the nature of these objects.

11.2. Intensional knowledge representation

SNePS can be used to represent propositions about entities
in the world having properties and standing in relations.
Roughly, nodes represent the propositions, entities, properties,
and relations, while the arcs represent structural links between
these.

SNePS nodes might represent extensional entities. Roughly,
extensional entities are those whose "identity conditions” (the
conditions for deciding when "two" of them are really the
"same") do not depend on their manner of representation. They

31'I'his is not really a restriction of SNePS, but of SNIP (the SNePS Inference
Package) and path-based inference.

32In (Maida and Shapiro, 1982) this name was given to only half of the
Uniqueness Principle as stated here: "each concept represented in the network is
represented by a unique node” (page 291).
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may be characterized as those entities satisfying the following
rough principle:

Two extensional entities are equivalent (for some purpose)

if and only if they are identical’’
For example, the following are extensional:

the Fregean referent of an expression;
physical objects;

sentences;

truth volues;

mathematical objects such as:

sets,
functions defined in terms of their input—output

behavior (that is, as sets of ordered pairs),
n-place relations defined in terms of sets of

ordered n—-tuples.

Although SNePS can be used to represent . extensional
entities in the world, we believe that it must represent
intensional entities. Roughly, intensional entities are those whose -
identity conditions do depend on their manner of representation.
They are those entities that satisfy the following rough
principle:

Two intensional entities might be equivalent (for some)
purpose without being identical (that is, they might
really be two, not one).

Alternatively, intensional entities may be characterized as
satisfying the following five criteria:

1. They are non-substitutible in referentially opaque
contexts.

2. They can be indeterminate with respect to some
properties.

3. They need not exist.

33that is, if and only if "they" are really ome entity, not two
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4. They need not be possible.

5. They can be distinguished even if they are
necessarily identical (for example, the sum of 2 and
2 and the sum of 3 and 1 are distinct objects of

thought).
For example, the following are intensional:

the Fregean sense of an expression;
concepts;
propositions;
properties;
algorithms;
objects of thought, inciuding:
fictional entities (such as Sherlock Holmes),

non-existents (such as the golden mountain),
impossible objects (such as the round square)

Only if one wants to represent the relations between a
mind and the world would SNePS also have to represent
extensional entities [cf. (Rapaport, 1976)., (Rapaport, 1978),
(McCarthy, 1979)]. However, if SNePS is used just to represent
a mind - that is, a mind's model of the world-then it does not
need to represent any extensional objects. SNePS can then be
used either to model the mind of a particular cognitive agent
or to build such a mind - that is, to be a cognitive agent
itself.

There have been a number of arguments presented in
both the Al and philosophical literature in the past few years
for the need for intensional entities, (Castaneda, 1974), (Woods,
1975), (Rapaport, 1976). (Rapaport, 1985a), (Brachman, 1977),
(Routley. 1979), cf. (Rapaport. 1984a), (Parsons, 1980), cf.
(Rapaport, 1985b)). Among them, the following considerations
seem to us 1o be especially significant:

Principle of Fine-Grained Representation:

The objects of thought (that is, intenfional objects)
are intensional: a mind con have two or more objects of
thought that correspond to only one extensional object.

To take the classic example, the Morning Star and the Evening
Star might be distinct objects of thought, yet there is only one
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extensional object (viz., a certain astronomical body)

corresponding to them.

Principle of Displacement:

Cognitive agents can think ond talk about non—existents:
a mind can have an object of thought that corresponds to
no extensional object.

Again 1o take several classic examples, cognitive agents can
think and talk about fictional objects such as Santa Claus,
possible but non-existing objects such as a golden mountain,
impossible objects such as a round square, and possible but
not-yet-proven-to-exist objects such as theoretical . entities (for
example, black holes). <

If nodes only represent intensional entities (and
extensional entities are not represented in the network), how do
they link up to the external, extensional world? In
SNePS/CASSIE, the answer is by means of a LEX arc (see
syntactic formation rule SR.1 and semantic interpretation rule
SL.1 in Section 11.3.3, below): the nodes at the head of the
LEX arc are our (the user’s) interpretation of the node at its
tail. The network without the LEX arcs and their head-nodes
displays the structure of CASSIE's mind [cf. (Carnap, 1967),
Section 11.14]. :

A second way that nodes can be linked to the world is
by means of sensors and effectors, either linguistic or robotic.
The robotic sort has been discussed in (Maida and Shapiro,
1982). Since so many Al understanding systems deal
exclusively with language, here we consider a system with a
keyboard as its sense organ and a CRT screen as its only
effector. ' '

Since the language system interacts with the outside
world only through language, the only questions we can
consider about the connections of its concepts with reality are
questions such as:

Does it use words as we do?

When it uses word w, does it mean the same thing as
when I use it?

When 1 use word w, does it understand what I mean?
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The perceptual system of the language sysiem is 1its
parser/analyzer - the programs that analyze typed utterances
and build pieces of semantic network. The motor system is
the generator - the programs thal analyze a section of the
semantic network and construct an utterance to be displayed on
the CRT. One crucial requirement for an adequate connection
with the world is simple consistency of input-output behavior.
That is, a phrase that is analyzed to refer to a particular node
should consistently refer to that node, at least while there is
no change in the network. Similarly, if the sysiem generates a
certain phrase to describe the concept represented by a node, it
should be capable of generating that same phrase for that same
node, as long as nothing in the network changes. Notice that
it is unreasonable to require that if a phrase is generated to
describe a node, the analyzer should be able to find the node
from the phrase:: The system might know of several brown
dogs and describe one as "a brown dog" it could not be
expected to find that node as the representation of "a brown
dog" consistently.

If we are assured of the simple input-output consistency
of the system, the main question left is whether it uses words
to mean the same thing as we do. It is the same question
that we would be concerned with if we were talking with a
blind invalid. although in that case we would assume the
answer was ‘Yes until the conversation grew so bizzare .that
we were forced to change our minds. As the system (or the
invalid) uttered more and more sentences using a particular
word or phrase. we would become more and more convinced
that it meant what we would mean by il, or that it meant
what we might have described with a different word or phrase
(*Oh! When you say ‘conceptual dependency structure’, you
mean what I mean when I say ’‘semantic network'"), or else
that we didn’t know what was meant, or that it was not
using it in a consistent, meaningful way (and hence that the
system (or invalid) did not know what it was talking about).
As long as the conversation proceeds without our getting into
the latter situation, the system has all the connections with
reality it needs.
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11.3. Description of SNePS/CASSIE

In this section, we introduce CASSIE, and give the syntax
and semantics for SNePS/CASSIE in terms of a philosophical
theory of mental entities inspired by Alexius Meinong's Theory
of Objects.

11.3.1. CASSIE - A model of a mind

SNePS nodes represent the objects of CASSIE's thoughts -
the things she thinks about, the properties and relations with
which she characterizes them, her beliefs, her judgments, etc.
[cf. (Maida and Shapiro. 1982), (Rapaport, 1985a)].  According
to the Principle of Displacement, a cognitive agent is able 10
think about virtually anything, including fictional objects,
possible but non-existing objects, and impossible objects. Any
theory that would account for this fact requires a non-standard
logic, and its semantics cannot be  limited to merely possible -
worlds. (Otherwise, it could not account for impossible
objects. This accounts for the difficulties David Israel has in
providing a possible-worlds semantics for SNePS (Israel, 1983),
(cf. (Rapaport, 1985a)). Theories based on the Theory of
Objects of the turn-of-the-century Austrian philosopher-
psychologist Alexius Meinong are of precisely this kind.

For present purposes, it will be enough to say that
Meinong held that psychological experiences consist in part of a
psychological act (such as thinking, believing, judging, wishing,
etc.) and the object 1o which the act is directed (for example,
the object that is thought about or the proposition that is
believed). Two kinds of Meinongian objects of thought are
relevant for us:

1. The objectum, or object of "simple" thoughts: Santa
Claus is the objectum of John's act of thinking of
Santa Claus. Objecta are the meanings of noun
phrases. '

2. The objective, or object of belief, knowledge, etc.:
that Santa Claus is thin is the objective of John's
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act of believing that Santa Claus is thin. Objectives
are like propositions in that they are the meanings
of sentences and other sentential structures.

It is important to note that objecta need not exist and that
objectives need not be true. [For details, see: (Meinong, 1904),
(Findlay. 1963), (Rapaport, 1976), (Rapaport, 1978), (Rapaport,
1981), (Rapaport, 1982), (Castaneda, 1974), (Castaneda. 1975a).
(Castaneda, 1975b), (Casteneda, 1975), (Castaneda, 1977),
(Castaneda, 1979), (Tomberlin, 1984), and (Routley, 1979); cf.
(Rapaport, 1984a), (Parsons, 1980); cf. (Rapaport, 1985b),
(Lambert, 1983); cf. (Rapaport, 1986a), (Zalta, 1983).]

This is, perhaps, somewhat arcane terminology for what
might seem like Al common sense. But without an underlying
theory, such as Meinong's, there is no way to be sure if
common sense can be trusted. It is important to note that not
only are all represented things intensional, but that they are
all objects of CASSIE's mental acts; that is, they are all in
CASSIE's mind (her "belief space") - they are all intentional.
Thus, even if CASSIE represents the beliefs of someone else
(for example, John's belief that Lucy is rich, as in the
conversation in the next section), the objects that she represents
as being in that person’s mind (as being in his "belief space”)
are actually CASSIE's representations of those objects - that is,
they are in CASSIE's mind.

11.3.2. A conversation with CASSIE

Before giving the syntax and semantics of the case frames
employed in representing CASSIE's "mind". we present a
conversation we had with her. An ATN parser/generator
(Shapiro, 1982) was used to parse the English input into SNePS
and to generate the SNePS structures in English. User input is
on the lines beginning with the :-prompt; CASSIE's output is
on the lines that follow. (Execution and garbage-collection
times have been edited out for clarity.)

: Young Lucy petted o yellow dog
1 understaond that young Lucy petted a yellow dog

: What is yellow



274 The Knowledge Frontier.

o dog is yellow

: Dogs are animals
I understand that dogs are animals

: Who petted an onimal
young Lucy petted o yellow dog

: Lucy is sweet
I understand that young Lucy is sweet

: Lucy is a girl
1 understand that sweet young Lucy is a girl

: Girls are people
I understand that girls are people

: What was petted by a person
a yellow dog was petted by sweet young Lucy

: The dog is named Rover
1 understand that Rover is a yellow dog

: What was petted by a person
yellow Rover was petted by sweet young Lucy

: John believes that Lucy is rich
I understand that John believes that Lucy is rich

: Who is rich
I don’t know.

: Who is sweet
young Lucy is sweet

: John believes that Lucy is old
I understand that John believes that rich Lucy is old

: John is a boy
1 understand that John is a boy

: Boys are people
1 understand that boys aore people

: Dogs aore pets
I understaond that dogs are pets

For every p and d if p is a person and d is a pet then p
loves d
I understand that for every d and p, if p is a person
and
‘d is a pet
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then p loves d

: Who loves ¢ pet
sweet young Lucy loves yellow Rover

and
John loves yellow Rover

11.3.3. Syntax and semantics of SNePS/CASSIE

In this section, we give the syntactic formation rules (SR)
and semantic interpretations (SI) for the nodes and arcs used in
this interaction, together with some other important ones. We
return to a more detailed examination of the interaction in the
next section. What we present here is our current model; we
make no claims about the completeness of the representational
scheme. In particular, we leave for another paper a discussion
of such structured individuals as the golden mountain- or the
round square, which raise difficull and important problems
with predication and existence. [For a discussion of these
issues, see (Rapaport, 1978), (Rapaport, 1985a).]

Information is represented in SNePS by means of nrodes
and arcs. Since the meaning of a node is determined by what
it is connected to in the network, there are no isolated nodes.
Nodes that only have arcs pointing fo them are considered to
be unstructured or atomic. They include:

(A1) sensory nodes, which represent interfaces with the
external world (in the exaomples that follow, they will
represent words, sounds, or utterances);

(A2) base nodes, which represent constant individual
concepts and properties;

(A3) variable nodes, which represent arbitrary individuals
(¢f. (Fine, 1983)) or arbitrary propositions.

Molecular nodes, which have arcs emanating from them, include:

(M1) structured individual nodes, which represent structured
individual concepts or properties (that is, concepts
and properties represented in such a way that their
internal structure is exhibited; see the discussion
of structured information in (Woods, 1975));

(M2) structured proposition nodes, which represent
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propositions; those with no incoming arcs represent

beﬁefS of the system.34 (Note that structured
proposition nodes can also be considered to be
structured individuals.) Proposition nodes are either
atomic (representing atomic propositions) or are

rule nodes. Rule nodes represent deduction rules
ond are used by SNIP (the SNePS Inference Package) for

node—based deductive inference.

For each of the three categories of molecular nodes (structured
individuals, atomic propositions, and rules), there are constant
nodes of that category and pattern nodes of that category

representling arbitrary entities of that category.
The rules labeled 'SR’, below, should be considered as

syntactic formation rules for a non-linear network language.
The semantic interpretations, labeled 'SI'. are in terms of
Meinongian objecta and objectives., which are intentional objects,
that is, objects of thought. Since intentionhal - objects are
intensional, our Meinongian semantics is an extensional
semantics over a domain of intensional entities (Meinongian
objects).

We begin with a few definitions.*

Definition 1
A node dominates another node if there is a path of directed

34There is a need to distinguish structured proposition nodes with no
incoming arcs 1rom structured individual nodes with no incoming arcs; the
latter. of course, are not beliefs of the system. This is handled by the
syntactic formation rules and their semantic interpretations. There is also a need
to distinguish between beliefs of the system and those propositions that the
system is merely contemplating or "assuming” temporarily [cf. (Meinong, 1983)).
We are currently adding this capability to SNePS by means of an assertion
operator (V).

35For details, see (Shapiro, 1977), (Shapiro, 1978), (McKay and Shapiro,
1980), (McCarty and Sridharan, 1981), (Shapiro and McKay, 1980), (Shapiro,
Martins, and McKay, 1982), (Martins, 1983a).

36Thcse are actually only rough definitions; the interested reader is referred
to (Shapiro, 1979b), Section 2.1, for more precise ones.
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arcs from the first node to the second node.

Definition 2
A pattern node is a node that dominates a variable node.

Definition 3
An individual node is either a base node, a variable node, or a
structured constant or pattern individual node.

Definition 4
A proposition node is either a structured proposition node or an
atomic variable node representing an arbitrary proposition.

SR.1 If "w" is an English word and "i" is an identifier not

previously used, then

LEX

is a network, w is a sensory node, and { is a structured
individual node.

SI.1 i is the Meinongian objectum corresponding to the
utterance of w.

SR.2 If either "t," and "t," are identifiers not previously used,
or "," is an identifier not previously used and t, is a temporal

node, then
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BEFORE

is a network and t; and t, are temporal nodes, that is

individual nodes representing times.

SL2 t, and t, are Meinongian objecta corresponding to two

time intervals, the former occurring before the latter.

SR.3 If i and j are individual nodes, and "m" is an identifiér
not previously used, then

is a network and m is a structured proposition node.

SI.3 m is the Meinongian objective corresponding to the
proposition that Meinongian objecta i and j (are believed by
CASSIE t0) correspond to the same actual object. (This is not
used in the conversation, but is needed for fully intensional
representational systems; cf. (Rapaport, 1978;RAPA84b) and
(Castaneda. 1974;:CAST75b) for analyses of this sort of
relation, and (Maida and Shapiro, 1982) for a discussion of its

USC.)

SR.4 If i and j are individual nodes and "m" is an identifier
not previously used, then
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OBJECT PROPERTY

is a network and m is a structured proposition node.

SI.4 m is the Meinongian objective corresponding to the
proposition that i has the property j.

SR.5 If i and j are individual nodes and "m" is an identifier
not previously used, then

OBJECT, PROPER-NAME

is a network and m is a structured proposition node.

SIS m is the Meinongian objective corresponding to the
proposition that Meinongian objectum i's proper name is j. (j is
the Meinongian objectum that is i's proper name; its expression
in English is represented by a node at the head of a LEX-arc

emanating from j.)

SR.6 If i and j are individual nodes and "m" is an identifier
not previously used, then
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is a network and m is a structured proposition node.

SI.6 m is the Meinongian objective corresponding to the
proposition that i is a (member of class) j.

SR.7 If i and j are individual nodes and "m" is an identifier
not previously used, then

SUBCLASS UPERCLASS

i

is a network and m is a structured proposition node.

SI7 m is the Meinongian objective corresponding to the
proposition that (the class of) is are (a subclass of the class

of) Js.

SR.8 If i}, i, ij are individual nodes, ¢, f,. are temporal nodes,
and "m" is an identifier not previously used, then
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@ BEFORE @
1

is a network and m is a structured proposition node.

SI.8 m is the Meinongian objective corresponding to the
proposition that agent i, performs act i, 10 or on i, starting at

time ¢, and ending at time ¢, where 7, is before z,.

It should be noted that the ETIME and STIME arcs are
optional and can be part of any proposition node. They are a
provisional technique for handling the representation of acts
and events; our current research on temporal representation is
much more complex and is discussed in Section 11.4.7, below.

SR.9 If m, is a proposition node, i is an-individual node, j is
the (structured individual) node with a LEX arc to the node,
believe, and "m," is an identifier not previously used, then
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is @ network and m, is a structured proposition node.

SI1.9 m, is the Meinongian objective corresponding to the
proposition that agent i believes proposition m,. -

Two special cases of SR.9 that are of interest concern de re
and de dicto beliefs; they are illustrated in Figure 11-2 and
Figure 11-3. [For details, see (Rapaport and Shapiro,
1984) and (Rapaport, 1984b), (Rapaport, 1986b).]

SR.10 If m,, .. , m_ are proposition nodes (n 2 0)."
are integers between O and n, inclusive, and "r" is an identifier
not previously used, then

@4 MIN fr\ MA* C

ARG

@)

is a network, and r is a rule node.

and "

SI.10 r is the Meinongian objective corresponding to the
proposition that there is a relevant connection between



11 SNePS 283

AGENT
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PROPERTY
OBJECT

JNVN-H3dOHd

Figure 11-2: Meinongian Objective - de re Reading .
my is the Meinongian objective corresponding to the

proposition that agent i, believes de re of objectum i3 (who
is believed by CASSIE to be named i 4) that it has the

property i 5

propositions m,. ... . m_ such that at least i and at most i(j) of

them are simultanenously true.

Rule » of SR/SL.10 is called AND-OR and is a unified
generalization of negation (i = j = 0). binary conjunction (i = j
= 2). binary inclusive disjunction (i = 1, j = 2). binary
exclusive disjunction (i = 0, j = 1), etc.

SR.11 If m, .. ., m_ are proposition nodes (n & 0). is an

integer between 0 and n. inclusive, and "r" is an identifier not
previously used, then
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PROPERTY
OBJECT
FANVYN-H3dOHd

believe

Figure 11-3: Meinongian Objective - de dicto Reading

)
©

m, is the Meinongian objective corresponding to the
proposition that agent iI believes de dicto that objectum i3
{who is believed by i TR be named i 4) has the property is.

THRESH

is a network, and r is a rule node.

SI.11 r is the Meinongian objective corresponding to the
proposition that there is a relevant connection between

propositions m,, .. , m_ such that either fewer than i of them

are true or they all are true.

Rule r of SR/SI.11 is called THRESH and is a generalization of
the material biconditional (i = 1).
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SR.12 If a; .. .a,¢c; .., ¢c; and d; .., d, are proposition
".n

nodes (n 2 1: j, k 2 0; j + k 2 1). "" is an integer
petween 1 and n. inclusive, and "r" is an identifier not
previously used, then

THRESH

§o0

is a network, and r is a rule node.

SI.12 r is the Meinongian objective corresponding to the
proposition that the conjunction of any i of the propositions a,,

. a, relevantly implies each ¢, (I € I € j) and relevantly
implies each d, (1 € I € k) for which there is not a better

reason to believe it is false.
SR.13 If a; .., @, ¢ .

nodes (n, j, k 2 0), and "r" is an identifier not previously
used, then

&A-N-T-\@ e

is a network, and r is a rule node.

c » €5 and d,, .. , d, are proposition

SL13 r is the Meinongian objective corresponding to the
proposition that the conjunction of the propositions a, .., a,

relevantly implies each ¢, (I < I £ j)and relevantly implies
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each d, (1 € | £ k) for which there is not a better reason tg

believe it is false.

The d, are default consequences, in the sense that each is
implied only if it is neither the case that CASSIE already
believes not d, nor that not d; follows from non-default rules.

SR.14 If a,. .. . a, ¢c; ..., C; and d,, .. , d, are proposition

n’

nodes (n 2 1:j.k 2 0; j+ k.2 1), and "r" is an identifier
not previously used, then

ca ca DCQ DC

ANT ANT Q

is a network, and r is a rule node.

SI.14 r is the Meinongian' objective corresponding to the
proposition that any a, 1 € i £ n, relevantly implies each ¢
(1 € 1 € j) and relevantly implies each d, (I < [ S k) for

which there is not a better reason to believe it is false.

SR.15 If m is a proposition node. and 'r
previously used, then

is an identifier not

7
O,

is a network, and r is a rule node.



11 SNePS 287

SI.15 r is the Meinongian objective corresponding to the
proposition that there is no good reason for believing

proposition m.

SR.16 If r is a rule node as specified by SR.10-SR.15, and r
dominates variable nodes v, .. , v, . and, in addition, arcs
Jabeled "AVB" go from r 1o each v, then r is a quantified rule

node.

SI.16 r» is the Meinongian objective corresponding to the
proposition that the rule that would be expressed by r without
the AVB arcs holds after replacing each v, by any Meinongian

object in its range.

SR.17 If r is a rule node as specified by SR.10-SR.15, and r
dominates variable nodes v, .. , v, and, in addition, arcs
labeled "EVB" go from r to each v, then r is a quantified rule

node.

SI.17 r is the Meinongian objective corresponding to the
proposition that the rule that would be expressed by r without
the EVB arcs holds after replacing each v, by some Meinongian

object in its range.

SR.18 If a;, ... , @ and c are proposition nodes; v,, .. , v, are
variable nodes dominated by one or more of a, ... .a_. ¢ 7,
"j'. and "n" are integers (0 £ i £ j € mn); and "r" is an
identifier not previously used; then

@<
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is a network, and r is a rule node.

SI.18 r is the Meinongian objective corresponding to the
proposition that, of the n sequences of Meinongian objects
which, when substituted for the sequence Vi o Vp make all
the a, believed propositions. between i and j of them also
satisfy c. (For further details on such numerical quantifiers, see
(Shapiro. 1979c¢).)

11.3.4. The conversation with CASSIE, revisited

In this section, we shall review the conversation we had
with CASSIE, showing the network structure as it is built -
that is, showing the structure of CASSIE's mind as she is given
information and as she infers new information. (Comments are

preceded by a dash.)

: Young Lucy petted a yellow dog
1 understand that young Lucy petted o yellow dog

— CASSIE is told something, which she now believes. Her
entire belief structure is shown in Figure 11-4 (a).
The node labeled "now" represents the current time, so
the petting is clearly represented os being in the past.
CASSIE’s response is "I understand that" appended to her
English description of the proposition just entered.

: What is yellow
6 dog is yellow

— This response shows that CASSIE octually has some
beliefs; she did not just parrot back the above
sentence.

: Dogs are animals
I understand that dogs are animals

— CASSIE is told a small section of a class hierarchy.

: Who petted an animal
young Lucy petted a yellow dog

— CASSIE can answer the question using the closs
hierarchy, because, prior to the conversation,
the inheritance rule
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Figure 11-4:  Fragment of CASSIE's Belief Structure

Fragment of CASSIE’s belief structure after being told
that voung Lucy petted a yellow dog.

(def-path class (compose class (kstar
(compose subclass— superciass))))

was given to SNePS. This rule says that the CLASS arc is
implied by the path consisting of a CLASS arc fol lowed
by zero or more occurrences of the two—arc path
consisting of the converse SUBCLASS arc followed by the
SUPERCLASS arc [see (Shapiro, 1978), (Srihari, 1981)].
The dog was called "a yellow dog" rather than "a yellow
animal"” because the redundant CLASS arc is not built.
Figure 11-5 shows the current state of )

CASSIE’s belief structure about the dog’s classificatio
and color.

Lucy is sweet
I understand that young Lucy is sweet
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=@
»{ animal

SUPERCLASS

SUBCLASS

LEX »{ o9

CLASS

MEMBER | o0 ieoT PROPERTY

O &
Figure 11-5: CASSIE's Belief Structure

CASSIE’s belief structure about the dog’s classification
and color. (Node m12 represents the dog.)

— CASSIE’'s response shows that she identifies this
Lucy with the previous Lucy.

Lucy is o girl
I understand that sweet young Lucy is a girl

- The beginning of o class hierarchy for Lucy. Notice
that all the adjectival properties of Lucy are mentioned.

: Girls are people
1 understand that giris are people

- More of the ciass hierarchy is given.

: What was petted by a person
a yellow dog was petted by sweet young Lucy

— Again, the proposition is retrieved using the CLASS
inheritance rule. The answer is expressed in the
passive voice because of the way the question was
asked.

: The dog is named Rover
"1 understand that Rover is o yellow dog
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- 'the dog’ refers to the only dog CASSIE knows about,
who is now given a name.

: What was petted by o person
yel low Rover was petted by sweet young Lucy

- This is exactly the some question that was asked
before. It is answered differently this time,
because the dog now has a name, and CASSIE prefers
to describe an individual by its name when it has
one.

John believes that Lucy is rich ,
I understand that John believes that Lucy is rich

— At this point in our development of CASSIE, she
interprets 'believes that' contexts to be de

dicto, so she assumes that the Lucy that John
has in mind is a different one from the Lucy
that she knows. Figure 11—6 shows CASSIE’s
beliefs about the two Lucies.

: Who is rich
I don’t know.

— CASSIE knows no one who is rich. She only believes
that John believes that someone (whom she believes:
that he believes to be named °Lucy’) is rich. The
answer is 'l don't know’, rather than 'no one is rich’,
because CASSIE doesn’t use the closed-world hypothesis.

: Who is sweet
young Lucy is sweet

- This question is asked merely to demonstrate that Lucy
is able to answer a "who is <property>" question when
she has relevant beliefs.

John believes that Lucy is old
I understand thot John believes that rich Lucy is old

- Even though CASSIE ossumes that John knows a
different Lucy than she knows, she assumes
that all John’s beliefs about "Lucy" are
about the same Lucy.

John is a boy
1 understond that John is a boy

- This and the next two inputs are given to
establish more of the ciass hierarchy and
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Figure 11-6: A Fragment of the Network

A Fragment of the network after CASSIE is told that
John believes that Lucy is rich. showing CASSIE’s beliefs
about the two Lucies.

to make it clear that when CASSIE answers
the last question of this session, she is
doing both path—based reasoning and node-
based reasoning at the same time.

] understand that boys are people

: Dogs are pets
I understand that dogs are pets

For every p and d if p is o person and d is a pet then p
loves d
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I understand that for every d and p, if p is o person and
d is a pet

-~ Figure 11-7 shows how this node—based
rule fits into the class hierarchy. This is, we
believe, equivalent to the integrated TBox/ABox
mechanism proposed for KRYPTON
[ (Brochman, Fikes, and Levesque, 1983),
(Brachman, Giibert, and Levesque, 1985)].

BEFORE . @

=) () O NS
@ SUPERCLASS I
1] ®

@0 @ 8

®

MEMBER

02020

O-=O5=2®O—0O®
eO&ECT

PROPER-NAME

O—®

Figure 11-7: A Node-based Rule in a Class Hierarchy

: Who loves a pet

sweet young Lucy loves yellow Rover
and
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John loves yellow Rover

- The question was answered using poth-based inferencing
to deduce that Lucy and John are people and that Rover
is a pet, and node—-based inferencing to concliude that,
therefore, Lucy ond John love Rover.

— The full network showing CASSIE’'s state of mind at the
end of the conversation is given in Figure 11-8.

Figure 11-8: CASSIE's Beliefs at the End of the Conversation
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11.4. Extensions and applications of SNePS

In this essay., we have been advocating the use and
interpretation of SNePS networks to model (the beliefs of) a
cognitive agent. SNePS, however, is of much wider and more
‘general applicability. In this section, we give examples of
recent and current research projects using SNePS in belief-
revision, as a database management system, for developing
several expert systems, and for representing temporal
information in narratives. Even though most of these uses of
SNePS do not explicitly involve a cognitive agent, it should be
noted that in each case the asserted nodes can be treated as-
"beliefs” of the system: beliefs about the database, beliefs about
the various domains of the expert systems, beliefs about
linguistics, etc.

11.4.1. SNePS as a database management system

SNePS can be used as a network version of a relational
database in which every element of the relational database is
represented by an atomic node, each row of each relation is
represented by a molecular node, and each column label
(attribute) is represented by an arc label. Whenever a row r
has an element e in column c¢, the molecular node representing
r has an arc labeled ¢ pointing to the atomic node representing
e. Relations (tables) may be distinguished by either of two
techniques, depending on the particular relations and attributes
in the relational database. If each relation has an attribute
that does not occur in any other relation, then the presence of
an arc labeled with that attribute determines the relationship
represented by the molecular node. A review of the syntax of
the CASSIE networks will show that this technique is used
there. The other technique is to give every molecular node an
additional arc (perhaps labeled "RELATION") pointing to an
atomic node whose identifier is the name of the relation. Table
11-1 shows the Supplier-Part-Project database of (Date, 1981),
p 114). Notice that the SNAME and STATUS attributes only
occur in the SUPPLIER relation; PNAME, COLOR. and
WEIGHT only occur in the PART relation; JNAME only occurs



296

The Knowledge Frontier:

in the PROJECT relation; and QTY only occurs in the SP)
Figure 11-9 shows the SNePS network for part of

this database.

relation.

Table 1: SUPPLIER

Table 4: SPJ

Table 11-1:

S# | SNAME | STATUS | CITY

sl | Smith 20 London

s2 | Jones 10 Paris

s3 | Blake 30 Paris

s4 | Clark 20 London

s5 | Adams 30 Athens

Table 2: PART

P# | PNAME | COLOR WEIGHT | CITY
pl | nut red 12 London
p2 | bolt green 17 Paris
p3 | screw blue 17 Rome
p4 | screw red 14 London
pS | cam blue 12 Paris
p6 | cog red 19 London
Table 3: PROJECT

J# | INAME | CITY

i) sorter Paris

2 | punch Rome

i3 reader Athens

H console Athens

» collator London

j6 | terminal | Oslo

j7 | tape London

S# | P# | J# | QTY
st | pl |1 | 200)
sl | pl | M4 700
s2 | p3 | )1 400
s2 { p3 | 2 200
s2 | p3 | 3 200
s2 | p3 | ¥4 | S0
s2 | p3 | ¥ 600
s2 | p3 | j6 400
s2 | p3 |7 800
s2 | pS |2 100
s3 [p3 (N 200
s3 | pd4 |2 500
s4 | p6 | i3 300
s4 | pb | §7 300
sS | p2 | 2 200
sS | p2 | A 100
sS | p5 | B 500
sS | pS |7 100
sS | p6 | J2 200
s [ pl [ 4 | 1000
sS | p3 | ¥ | 1200
sS | p4.| 4 800
sS | p5S | M 400
s5 | p6 | M4 500

Tables Supplier Part Project and SPJ

Many database retrieval requests may be formulated using
the find command of SNePSUL. the SNePS User’s Language.
The syntax of find is (find r; n, ..
either an arc or a path, and n; is either a node or a set of
The value
of a call to find is the set of all nodes in the network with
an r, arc to any node in the set n;, an r, arc 10 any node in

nodes (possibly the value of a nested call to find).

nm). where 1, is
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Figure 11-9: Fragment of SNePS Network for the
Supplier-Part-Project Database.

the set n,, ... , and an r_ arc to any node in the set n. Free
variables are prefixed by "?". An infix '-' sign between finds
represents the set difference operator.

The session below shows some of the queries from (Date,
1981); pp 141-142 1iranslated into find commands, and the
results on the database shown above. (In each interaction,
comments are preceded by semicolons, user input follows the
*-prompt, and SNePS responses are on succeeding lines.
Execution and garbage collection times have been edited out for -

clarity.)

; Get full details of all projects in London.

+ (dump (find jnaome ?x city London))

(m18 (city (London)) (jnome (tope)) (jnum (j7)))
(m16 (city (London)) (jname (collator)) (jnum (j5)))

(dumped)

; Get SNUM values for suppliers who supply project J1
; with part P1.

» (find snum— (find jnum j1 pnum p1))

(s1)

; Get JNAME values for projects supplied by supplier S1.
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« (find (jnome— jnum jnum— snum) s1)
(console sorter)

Get S§ values for suppliers who supply both projects

; J1 ond J2.
«» (find (snhum— jnum) j1 (snum— jnum) j2)
(s3 82)

: Get the names of the suppliers who supply project J1

; with a red part.

» (find (sname- snum snum—) (find jnum j1 (pnum pnum-
color) red))

(Smith)

;. Get S§ values for suppliers who supply a London or Paris
R project with a red part.

«» (find snum— (find (jnum jnum— city) (London Paris)

(pnum pnum— color) red))

(s4 st)

. Get P§ values for parts supplied to any project by

; o supplier in the same city.

» (flnd pnum— (find (jnum jnum— city) ?city (snum snum—
city) ?city))

(pS p4 p1 p2 p6 p3)

: Get JF values for projects not supplied with any red port

; by any London supplier.

« ((find jnum— ?x)—(find jnum— (find (pnum pnum— color) red

(snum snum— city) London)))
(j6 j5 j2)

, Get Sf values for suppliers supplying at least one part

, supplied by at least one supplier who supplies at ieast

; one red part.

+ (find (snum— pnum pnum— snum snum— pnum pnum— color) red)
(s3 s4 s2 s5 s1)

Get J# values for projects which use only parts which are
; availabie from suppliier S1.

+ ((find jnum— (find qty ?q))

- (find (joum— pnum) (find pnum— ?r) — (find (pnum— snum)

s1)))

nil

11.4.2. Address recognition for mail sorting

A research group led by Sargur N. Srihari is studying
address recognition techniques for automated mail sorting
(Srihari, Sargur, Jonathan, Palumbo, Niyogi. and Wang, 1985).
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Computer determination of the sorti-destination of an arbitrary
piece of letter-mail from its visual image is a problem that
remains far from solved. It involves overcoming several
sources of ambiguity at both the spatio-visual and linguistic
levels: The location of the destination address has to be
determined in the presence of other text and graphics; relevant
address lines have to be isolated when there are irrelevant lines
of text in.the address block; the iconic shapes of characters
have to be classified into words of text when numerous types
of fonts, sizes, and printing media are present; and the
recognized words have to be verified as having the syntax and
semantics of an address.

Spatial  relationships between objects are essential
knowledge sources for vision systems. This source extends
naturally to the postal-image understanding problem, because of
strong directional expectations. For example, the postage mark is
usually above and to the right of the destination address, and
the return address is usually to the left of the postage. A
semantic network is a natural representation for geometric
relations.

An envelope image is segmented into blocks, and a SNePS
network is built that represents the geometric relations between
blocks and information about the relative and absolute area
occupied by each block. A preliminary set of geometric
relations are the eight compass points. Relative area occupancy
is expressed as the percentage of each block that falls in each
of nine equal rectangular subdivisions of the envelope image,
and absolute area is given in terms of the number of pixels
covered by each block. The program constructs an exhaustive
representation of all the geometric relations present in the
image. Given the image produced by an initial segmentation
procedure, a rough, intuitive output, shown in Figure 11-10
with some arc labels removed for clarity) was produced.

Future work in this area includes refinement of the data
structure to represent more information more efficiently and
the addition of inferencing capabilities whose objective is to
present the control structure with tentative decisions about the
address block based only on the information provided by the
initial segmentation.
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Figure 11-10: SNePS Network Representation of Initial
Segmentation of Envelope Image
(from Srihari, Hull et al. 1985)

11.4.3. NEUREX

The NEUREX project (Cheng, 1984), (Xiang and Srihari,
1985), (Xiang, Srihari, Shapiro and Chutkow, 984"), (Suchin,
1985) is a diagnostic expert system for diseases of the central
and peripheral nervous systems; it also deals with information
about neuroaffectors, neuroreceptors., and body parts. SNePS is
used to  represent  spatial structures and  functions
propositionally. Entities are represented topologically by means
of proposition nodes expressing an entity's shape, position, etc.,
and spatial relations are represented by proposition nodes
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expressing adjacency, connectivity, direction, etc. This approach
integrates structural and functional neuroanatomical information.
Moreover, the representation is both propositional and analog.
For the peripheral nervous system. there are nodes representing
such propositions as that, for example, a sequence of nerve
segments are linked at junctions, and that the whole sequence
forms a (peripheral) nerve: the network that is built is itself
an analog representation of this nerve (and ultimately, together
with its neighbors, of the entire peripheral nervous system). See
Chapter 15 for further discussion of analog representations. For
the central nervous system, there are coordinates in the
network representation that can be used to support reasoning
by geometrical computation or graphical interfaces. '

As one example, the network of Figure 11-11 can be used

by the system to determine which muscles are involved in
shoulder-joint flexion, using the SNePS User Language request

(find (ms— cn) (find jt shoulder—joint mv fiexion)),
which returns the following list of four nodes:

(deitoid pectoralis_major_clavicular_head
coracobrachialis biceps_brachii)

Furthermore. rules, like that shown in Figure 11-12, can be
employed and can even include probabilistic information. (Note
that node r in Figure 11-12 is the SNePS implementation of
the IF-THEN rule; ¢f. (SR.13).)

11.4.4. Representing visual knowledge

The goal of the Versatile Maintenance Expert System
(VMES) project is to develop an expert maintenance system
that can reason about digital circuits represented graphically
(cf. (Shapiro, Srihari, Geller, and Taie, 1986;SSTG86)). A
similar  perspective on the need for visual Kknowledge
representation is taken by Tsotsos and Shibahara (Chapter 10)
and Havens and Mackworth (Chapter 16). The representation
is not pixel-oriented; this is a project in visual knowledge
representation integrated with more traditional conceptual and
propositional knowledge representation. The graphical form of
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Figure 11-11: Four of the Shoulder-Joint Movements

Four of the shoulder-joint movements with musscles involved
and their contribution to each relevant movement. (Meaning
of the arc labels: jt=joint; mv=movement; ms=muscle;
cn=contribute; pr=percentage.) (From Xiang and Srihari 1985)

an object is a LISP function that, when evaluated, draws the
object on the screen. Propositional nodes express information
about (1) the relative or absolute position of the object and (2)
attributes of the object. Visual knowledge can also be
distributed among nodes in traditional hierarchies: for example,
the knowledge of how to display a particular hammer may be
stored at the level of the class of hammers; the knowledge of
how to display a person may be disiributed among the nodes
for heads, arms, etc.

For example, Figure 11-13 shows a set of three assertions.
Node m233 represents the assertion that the object
TRIANGLE-1 is 100 units to the right and 20 units below the
object SQUARE-1. The MODALITY arc permits the selection of
different modes of display; here, we want 1o display
TRIANGLE-1 in "functional” mode. Node m220 states that
every member of the class TRIANGLE displayed in functional
mode has the form DTRIANG associated with it. Finally, node
m219 asserts that TRIANGLE-1 is a TRIANGLE.
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examine

Figure 11-12:  SNePS Network for a NEUREX Rule. .
(From Xiang and Srihari 1985)

*

Figure 11-13: SNePS Network in VMES for the Form
and Relative Position of TRIANGLE-1.

Figure 11-14 contains four assertions, of which node
m246 is the most complex. It links the object GATE-1 to an
absolute position at 100/400 and to the class of all AND-gates.
Node m244 asserts that GATE-1 is a part of BOARD-1. Node
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m248 asserts that INP1-GATEl is a PART-OF GATE-1 and
belongs to the class AINP1. The label 'PART" actually stands
for "has part". Node m239 links the attribute BAD to GATE-1.
Every attribute belongs to an attribute class, and the arc
ATTRIBUTE-CLASS points to the class STATE.

Figure 11-14: SNePS Network in VMES for the Location,
Structure, and State of GATE-1.

11.4.5. SNeBR: A belief revision package

The SNePS Inference Package has been extended by Joao
Martins to handle belief revision - an area of AI research
concerned with the issues of revising sets of beliefs when a
contradiction is found in a reasoning system. Research topics
in belief revision include the study of the representation of
beliefs, in particular how to represent the notion of belief
dependence; the development of methods for selecting the subset
of beliefs responsible for contradictions; and the development of
techniques to remove some subset of beliefs from the original
set of beliefs. (For an overview of the field, see (Martins,
1987).)

SNeBR (SNePS Belief Revision) is an implementation in
SNePS of an abstract belief revision system called the Multiple
Belief Reasoner (MBR), which, in turn, is based on a relevance
logic system called SWM (after Shapiro, Wand, and Martins)
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(Shapiro and Wand. 1976). (Martins, 1983b), (Martins. 1983a).
(Martins and Shapiro, 1984), (Martins and Shapiro, 1986a),
(Martins and Shapiro. 1986b), (Martins and Shapiro, 1986¢).
SWM contains the rules of inference of MBR and defines how
contradictions are handled. The only aspect of SWM relevant
to this description concerns the objects with which MBR deals.
called supported wffs. They are of the form

Alt o r

where A is a well-formed formula representing a proposition, ¢
is an origin tag indicating how A was obtained (for example,
as a hypothesis or as a derived proposition), o is an origin set
containing all and only the hypotheses used to derive A, and r
is a restriction set containing information about contradictions
known to involve the hypotheses in o. The triple ¢, o, r is
called the support of the wff A. The origin tag, origin set,
and restriction set of a wff are computed when the wff is
derived, and its restriction set may be wupdated when
contradictions are discovered.

MBR uses the concepts of context and belief space. A
context 1s any set of hypotheses. A context determines a belief
space., which is the set of all the hypotheses defining the
context together with all propositions derived exclusively from
them. The propositions in the belief space defined by a given
context are characterized by having an origin set that is
contained in the context. At any point, the set of all
hypotheses under consideration is called the current context,
which defines the current belief space. The only propositions
that are retrievable at a given tlime are the ones belonging to
the current belief space.

A contradiction may be detected either because an
assertion is derived that is the negation of an assertion already
in the network, or because believed assertions invalidate a rule
being used (particularly an AND-OR or a THRESH rule; see
(SR/SI1.10-11)). In the former case, the contradiction is noted
when the new, contradictory, assertion is about to be built into
the network, since the Uniqueness Principle guarantees that the
contradictory assertions will share network structure. In the
latter case, the contradiction is noted in the course of applying
the rule. In the former case, it may be that the contradictory
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assertions are in different belief spaces (only the new one being
in the current belief space). If so. the restriction setls are
“updated to reflect the contradictory sets of hypotheses, and
nothing else happens. If the contradiclory assertions are both
in the current belief space (which will be the case when one
of them is a rule being used). then, besides updating the
restriction sets, the user will be asked to delete at least one of
the hypotheses underlying the contradiction from the current
context. Management of origin sets according to SWM
guarantees that, as long as the current context was originally
not known to be contradictory, removal of any one of the
hypotheses in the union of the origin sets of the contradictory
assertions from the current context will restore the current
context to the state of not being known to be inconsistent. '

11.5. Knowledge-based natural la.nguage‘
understanding -

Jeannette Neal has developed an Al system that can treat
knowledge of its own language as its discourse domain, (Neal,
1985). The system's linguistic knowledge is represented
declaratively in its network knowledge base in such a way that
it can be used in the dual role of "program” to analyze
language input to the system and "data" to be queried or
reasoned about. Since language forms (part of) its domain of
discourse, the system is also able to learn from the discourse
by being given instruction in the processing and understanding
of language. As the system’s language knowledge is expanded
beyond a primitive Kkernel language, instructions can be
expressed in an increasingly sophisticated subset of the language
being taught. Thus, the system's language is used as its own
metalanguage.

The kernel language consists of a relatively small
collection of predefined terms and rewrite rules for expressing
syntax and for expressing the mapping of surface strings to the
representation of their interpretations.

- The knowledge representations include representations for
surface strings and for relations such as: (a) a lexeme being a
member of a certain lexical category, (b) bounded string B
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peing in category C and this phrase structure being represented
py concept N, (¢) a structure or parsed siring expressing a
certain concept, and (d) one phrase structure being - a
constituent of another structure.

In order to talk about both the syntax and semantics of
language, the network representations distinguish between a
word or string and its interpretation. In one experiment, the

statements
(M) A WOMAN IS A HUMAN
(2) "WOMAN® IS SINGULAR

were input to the system. The first makes a claim about
women, the second makes a claim about the word ‘woman'.
Nodes m40 and m50 of Figure 11-15, respectively. represent
the propositions expressed by these statements. The concept or
class expressed by "WOMAN' is represented by node .b22; the
entity represented by node b22 is a participant in the subset-
superset proposition expressed by (1). - However, in the
representation of (2). the word "WOMAN’ itself is the entity .
having the property SINGULAR.
Additional statements, such as:

(R) IF THE HEAD-NOUN OF A NOUN-PHRASE X
HAS NUMBER Y, THEN X HAS NUMBER Y.

were input to the system to demonstrate the use of a subset
of English as its own metalanguage in building up the system's
language ability from its primitive predefined language. Figure
11-16  illustrates  the representation of the system’s
interpretation of rule (R) as well as the representation of
certain linguistic relations. Node m87 represents the proposition
that some bounded string represented by variable node v4 is in
the category HEAD-NOUN, and this phrase structure is
represented by variable node v3. Node m88 represents that the
phrase structure represented by node v3 is a constituent of v1,
which represents a NOUN-PHRASE structure. (In this figure,
the AVB arcs have been eliminated for clarity; cf. (SR/SL16).)
As soon as any rule such as (R) is parsed and interpreted, it
is immediately available for use in subsequent processing.
Thus, the system is continuously educable and can use its
language as its own metalanguage.
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Figure 11-17:  SNePS Newwork for a Short Narrative.

Subscripts are used in the figure to show the successive values
of NOW.

The BEFORE-AFTER-DURATION case frame is used to
indicate that the period of time pointed to by the BEFORE-arc
temporally precedes the period of time pointed to by the
AFTER-arc by the length of time pointed to by the
DURATION-arc. These durations are usually not known
precisely. The value <epsilon> stands for a very short
interval; whenever an event occurs in the narrative line, it has
the effect of moving NOW an interval of <epsilon> beyond

it.
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The DURING-CONTAINS case frame is used to indicate
that the period of time pointed to by the DURING-arc is
during (or contained in) the period of time pointed to by the
CONTAINS-arc. Notice that the progressive sentence, "The sun
was setting", created an event that contains the then-current
NOW. If the system knows about such things as sunsets, then
it should infer that the event of the sun's setting also contains
John's arrival, his ringing of the bell, and probably also Mary's
opening of the door.

11.6. Conclusion: SNePS and SNePS/CASSIE as
Semantic Networks

‘We shall conclude by looking at SNePS and
SNePS/CASSIE from the perspective of Brachman's discussions
of structured inheritance networks such as KL-One  and
hierarchies of semantic network formalisms (Brachman, 1977,

Brachman, 1979).

11.6.1. Criteria for semantic networks

Brachman offers six criteria for semantic networks:

A semantic network must have a uniform notation. SNePS
provides some uniform notation with its built-in arc labels for
rules, and it provides a uniform procedure for users to choose
their own notation.

A semantic network must have an algorithm for encoding
information. This is provided for by the interfaces to SNePS,
for example, by the parser component of our ATN parser-
generator that takes English sentences as input and produces
SNePS networks as output.

A semantic network must have an ‘“assimilation”
mechanism for building new information in terms of stored
information. SNePS provides for this by the Uniqueness
Principle, which enforces node sharing during network building.
The assimilation is demonstrated by the generator component of
our ATN parser-generator, which takes SNePS nodes as input
and produces English output expressing those nodes: Our
conversation with CASSIE illustrated this the node built to
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represent the new fact, Lucy is sweet, is expressed in terms
of the already existing node for Lucy (who had previously
been described as young) by ‘young Lucy is sweet'.

A semantic network should be neutral with respect 1o
network formalisms at higher levels in the Brachman hierarchy.
SNePS is a semantic network at the “logical" level, whereas
SNePS/CASSIE is at the "conceptual" level. SNePS is neutral in
the relevant sense; it is not so clear whether SNePS/CASSIE is.
But neutrality at higher levels may not be so important. a
more important issue is the reasons why one formalism should
be chosen over another. Several possible criteria that a
researcher might consider are: efficiency (including the ease of
interfacing with other modules; for example, our ATN parser-
generator has been designed for direct interfacing with SNePS),
psychological adequacy (irrelevant for SNePS, but precisely what
SNePS/CASSIE is: being designed for), ontological adequacy
(irrelevant for SNePS/CASSIE-see below). -logical adegquacy
(guaranteed for SNePS. because of its inference package), and
natural language adequacy (a feature of SNePS's interface with
the ATN grammar).

A semantic network should be adequate for any higher-
level network formalism. SNePS meets this nicely: KL-One
can be implemented in SNePS (Tranch, 1982).

' A semantic network should have a semantics. We
presented that in Section 11.3. But it should be observed that
there are at least two very different sorts of semantics. In
SNePS. nodes have a meaning within the system in terms of
their links to other nodes; they have a meaning for users as
provided by the nodes at the heads of LEX arcs. Arcs, on the
other hand, only have meaning within the system, provided by
node- and path-based inference rules (which can be thought of
as procedures that operate on the arcs). In both cases, there is
an "internal", system semantics that is holistic and structural:
the meaning of the nodes and arcs are not given in isolation,
but in terms of the entire network. This sort of "syntactic"
semantics differs from a semantics that provides links to an
external interpreting system, such as a user or the "world" -
that is, links between the network’s way of representing
information and the user's way. It is the latter sort of
semantics that we provided for SNePS/CASSIE with respect to
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an ontology of Meinongian objects.

11.6.2. SNePS and SNePS/CASSIE vs. KL-One

SNePS and SNePS/CASSIE can be compared directly to
KL-One. Unlike KL-One, which is an inheritance-network
formalism for representing concepts, instances of concepts. and
properties and  relations among them, SNePS is a
propositional-network formalism for representing propositions
and their constituents (individuals, properties. and relations).

Nevertheless, SNePS can handle inheritance. = We have
already seen an example of inheritance by path-based inference
in the conversation with CASSIE. In that example, inheritance
could also have been accomplished through node-based inference
by. for example, representing 'dogs are animals’ as a
universally-quantified rule rather than by a SUBCLASS-
SUPERCLASS case frame. That is, where an inheritance
network might express the claim that dogs -are animals by a
single arc (say, a subclass-arc) from a dog-node to an animal-
node. SNePS could express it by a proposition (represented by
node m17 in Figure 11-5.).

One advantage of the propositional mode of representation
and, consequently, of the second, or rule-based, form of
property inheritance is that the proposition (m17) expressing
the relationship can then become the objective of a proposition
representing an agent’s belief or it can become the antecedent
or consequent of a node-based rule. In some inheritance
networks, this could only be done by choosing to represent the
entire claim by either the dog-node, the animal-node. the
subclass-arc. or (perhaps) the entire structure consisting of the
two nodes and the arc. The first two options seem incorrect,
the third and fourth either introduce an anomaly into the
representation (since arcs can then point either to nodes or to
other arcs or to structures), or it reduces to what SNePS does:
SNePS, in effect, trades in the single arc for a node with two
outgoing arcs. In this way, the arcs of inheritance networks
become information-bearing nodes, and the semantic network
system becomes a propositional one.

Second, KL-One wuses ‘“epistemologically primitive links".
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But why does KL-One use the particular set of links that it
does. and not some other set; that is, what is the ontological
justification for KL-One's links? There have been many
philosophical and logical theories of the relations of the One to
the Many (part-whole, member-set-superset, instance-concept,
individual-species-genus, object-Platonic Form, etc.). KL-One's
only motivation seems to be as a computationally efficient
theory that clarifies the nature of inheritance networks; but it
does not pretend to ontological or psychological adequacy.
Indeed. it raises almost as many questions as it hopes 1o
answer. For example, in KL-One, instances of a general concept
seem to consist of instances of the attributes of the general
concept. each of which instances have instances of the values
of those attributes. But this begs important philosophical
questions about the relations between properties of concepts (or
of Forms, or of ..) and properties of individuals falling under
those concepts (or participating in those Forms, ‘or ..., some of
these issues are discussed in (Brachman, 1983), but not from a
philosophical point of view): Are they the same properties?
Are the latter "instances” of the former? Are there such things
as concepts (or Forms, or ..) of properties? And do instance
nodes represent individuals? Do they represent individual
concepts? [cf. (Brachman, 1977): 148.]

Now, on the one hand. SNePS/CASSIE's arcs are also
taken to be 'primitive"; but they are justified by the
Meinongian philosophy of mind briefly sketched out above and
explored in depth in the references cited. On the other hand.
SNePS's arcs. by contrast to both SNePS/CASSIE's and KL-
One's. are nol restricted to -any particular set of primitives.
We believe that the interpretation of a particular use of SNePS
depends on the user's world-view: the user should not be
required to conform to ours.

And., unlike KL-One, the entities in the ontology for
SNePS/CASSIE are not to be taken as representing things in the
world: SNePS/CASSIE's ontology is an epistemological ontology
[cf. (Rapaport, 1985a), (Rapaport, 1985b), (Rapaport, 1986a)]
consisting of the purely intensional items that enable a
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cognitive agent to have beliefs (about the world). An
epistemological ontology is a theory of what there must be in
order for a cognitive agent to have beliefs (about what there
is).
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