Grid/Cloud Computing over Optical Networks
- Opportunities & Research Issues

Chunming Qiao

Lab for Advanced Network Design, Evaluation and Research (LANDER)

University at Buffalo (SUNY)
Outline

- Optical Grid Computing for Petascale Science
- Federated Computing and Networking as Next Generation Cloud Computing
Petascale Science

- Sharing of large amounts of data (in PB range) generated by big experiment instruments and observatories
- Supporting thousands of collaborators worldwide
- Distributed data processing
- Distributed simulation, visualization, and computational steering
- Distributed data management
Petascale Science

<table>
<thead>
<tr>
<th>Science Areas / Facilities</th>
<th>End2End Reliability</th>
<th>Connectivity</th>
<th>Today</th>
<th>5 years</th>
<th>Network Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Light Source</td>
<td>-</td>
<td>• DOE sites</td>
<td>1 TB/day</td>
<td>5 TB/day</td>
<td>• Guaranteed bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• US Universities</td>
<td>300 Mbps</td>
<td>1.5 Gbps</td>
<td>• PKI / Grid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>-</td>
<td>• DOE sites</td>
<td>625 Mbps</td>
<td>250 Gbps</td>
<td>• Guaranteed bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• US Universities</td>
<td></td>
<td></td>
<td>• High-speed multicast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry / Combustion</td>
<td>-</td>
<td>• DOE sites</td>
<td>-</td>
<td>10s of Gigabits per second</td>
<td>• Guaranteed bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• US Universities</td>
<td></td>
<td></td>
<td>• PKI / Grid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Science</td>
<td>-</td>
<td>• DOE sites</td>
<td>-</td>
<td>5 PB per year</td>
<td>• Guaranteed bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• US Universities</td>
<td></td>
<td>5 Gbps</td>
<td>• PKI / Grid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• International</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Energy Physics (LHC)</td>
<td>99.95+% (Less than 4 hrs/year)</td>
<td>• US Tier1 (DOE)</td>
<td>10 Gbps</td>
<td>100 Gbps (30-40 Gbps per US Tier1)</td>
<td>• Guaranteed bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• US Universities</td>
<td></td>
<td></td>
<td>• Traffic isolation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• International</td>
<td></td>
<td></td>
<td>• PKI / Grid</td>
</tr>
</tbody>
</table>
Current, Near- and Long-term Requirements

<table>
<thead>
<tr>
<th>Science Areas</th>
<th>Today End2End Throughput</th>
<th>5 years End2End Throughput</th>
<th>5-10 Years End2End Throughput</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Energy Nuclear Physics</td>
<td>10 Gb/s</td>
<td>100 Gb/s</td>
<td>1000 Gb/s</td>
<td>high bulk throughput and sporadic</td>
</tr>
<tr>
<td>Climate (Data & Computation)</td>
<td>0.5 Gb/s</td>
<td>160-200 Gb/s</td>
<td>N x 1000 Gb/s</td>
<td>high bulk throughput</td>
</tr>
<tr>
<td>Genomics (Data & Computation)</td>
<td>0.091 Gb/s (1 TB/day)</td>
<td>100s of users</td>
<td>1000 Gb/s + QoS for control</td>
<td>high throughput and steering</td>
</tr>
<tr>
<td>SNS NanoScience</td>
<td>Not yet started</td>
<td>1 Gb/s</td>
<td>1000 Gb/s + QoS for control</td>
<td>remote control and time critical throughput</td>
</tr>
<tr>
<td>Fusion Energy</td>
<td>0.066 Gb/s (500 MB/s burst)</td>
<td>0.198 Gb/s (500MB/20 sec.)</td>
<td>N x 1000 Gb/s</td>
<td>time critical throughput</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>0.013 Gb/s (1 TB/week)</td>
<td>N*N multicast</td>
<td>1000 Gb/s</td>
<td>computational steering and collaborations</td>
</tr>
</tbody>
</table>
A Composable Data Transfer Framework

- Dynamic reconfiguration capabilities
 - to support different objectives such as burst, scheduled, and streaming delivery
- Automatic detection of scenarios and use of appropriate/ available
 - transport media (e.g., (circuit-based WDM, VLANs, SONET, etc), and
 - protocols, such as (TCP-variants, UDP-variants, InfiniBand, SCSI, etc.)
- Capability of one-to-many, and many-to-many data transfers,
 - via Application Level Multicast or peer-to-peer approach
Federated Computing and Networking (FCN)

- A FCN system consists of computing facilities (e.g., clusters, data centers) interconnected with wide-area WDM networks.
- A FCN *service provider* uses its own computing and WDM networking resources (or resources that belong to a third party for which it is a broker).
- FCN: the next generation of Cloud Computing
 - Interact directly with the WDM networks
 - Integrate a larger scale of computing and networking resources
 - Provide stronger Service Level Agreements (SLAs) including high availability and robustness than e.g., Amazon’s EC2.
VI Job & WF Job

- Two general types of distributed jobs / apps
 - **Virtual Infrastructure (VI)**
 - specifies a set of computing resources (e.g., processing clusters), and their connectivity (in terms of topology, bandwidth, and delay) for a specific period of time
 - Typically represented using a general directed graph
 - **Workflow (WF)**
 - involves large data sets to be distributed among many sites
 - Represented using a directed acyclic graph, or DAG, where directed edges imply precedence among the tasks
Support VI/WF Jobs in FCNS: the ASAP Platform

- **Provision Application-Specific, Agile, and Private (ASAP) platform**
 - Given: a VI or WF job request,
 - Determine: the mapping of the tasks to computing facilities, and the routes as well as wavelengths to be used for connections over the WDM networks,
 - Objective: to satisfy the job’s requirements with some optimization goals
Illustration of FCNS
Example Research Issues

- Advanced Network Provisioning Technologies
 - enable dynamic, multi-layer, end-to-end, circuit-based services across federated networks
 - Extensions of existing control plane technologies such as (GMPLS, MPLS, etc.) to accommodate scheduling, and reservation
 - unified control plane technologies, path computations, and traffic engineering for multi-layer and multi-domain networks offering hybrid best-effort IP, burst and switched circuit services
Example Research Issue II

- **Resource co-scheduling to improve data transfer or data analysis job performance:**
 - Offline/online provisioning of data transfer request(s)
 - Optimal co-scheduling of computing resources (e.g., storage/caching) and network resources
 - Offline/online provisioning of data analysis job(s)
 - Decide the execution host(s) for the job(s), and establish network paths to stage missing input files locally
Example Research Issue III

- Fault Diagnosis and Tolerance
 - Dynamic performance monitoring over heterogeneous multi-domain networks
 - Fault location and diagnosis
 - Protection/Restoration approaches to survive various failure scenarios
 - Proactive replication to increase the availability of data
 - Network coding to reduce storage and bandwidth requirements
Research Issue IV

- SLA-driven, cost-effective algorithms for provisioning ASAP platforms,
 - addressing the optimal joint task assignment & scheduling and lightpath establishment (as well as traffic grooming) problems,
 - subject to heterogeneous computing resources and limited optical networking resources

- Robust and resilient approaches to survivable ASAP platforms
 - considering tradeoffs involving SLA guarantee and resource usage, under various failure scenarios
Previous Results

- “Performance Comparison of Optical Circuit and Burst Switching for Distributed Computing Applications” - OFC 2008

- “Survivable Optical Grids” - OFC 2008

- “Task Scheduling and Lightpath Establishment in Optical Grids” - INFOCOM 2008 Mini-Conference
Recent Works

- Maximizing the Revenues for Distributed Computing Applications over WDM Networks - OFC 2009, OMG2
- “Survivable Logical Topology Design for Distributed Computing in WDM Networks” - OFC 2009 OMO3
- “Robust Application Specific and Agile Private (ASAP) Networks Withstanding Multi-layer Failures” - OFC 2009 OWY 1 (Wed)
- “Online Job Provisioning for Large Scale Science Experiments over an Optical Grid Infrastructure” - HSN 2009 in conjunction with INFOCOM 2009
- “Application-Specific, Agile and Private (ASAP) Platforms for Federated Computing Services over WDM Networks” - in INFOCOM 2009 Mini-Conference
Thank you!