Automated Deduction for Verification

Natarajan Shankar

SRI International

Automated deduction uses computation to perform symbolic logical reasoning. It has been a core technology for program verification from the very beginning. Satisfiability solvers for propositional and first-order logic significantly automate the task of deductive program verification. We introduce some of the basic deduction techniques used in software and hardware verification and outline the theoretical and engineering issues in building deductive verification tools. Beyond verification, deduction techniques can also be used to support a variety of applications including planning, program optimization, and program synthesis.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic; I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving

General Terms: Theory, Verification

Additional Key Words and Phrases:

ACM Reference Format:

1. INTRODUCTION

The feasibility of large-scale formal software verification rests squarely on the development of robust, sophisticated, and scalable verification tools. Recent advances in verification technology on a number of fronts have made it possible to contemplate a major push toward large-scale software verification [Hoare 2003; Hoare and Misra 2008]. These advances have already yielded practical tools for solving hard verification problems. Many of these tools are already in industrial use. Deductive techniques are used both for finding bugs and for stating and proving correctness properties. They can also be used to construct and check models and proofs, and to synthesize functions and formulas in a wide range of logical formalisms. We survey deductive approaches to verification based on satisfiability solving, automated proof search, and interactive

Funded by NSF CISE Grant 0646174 and 0627284, NSF SGER grant CNS-0823086, and NASA Cooperative Agreement NNX08AY53A.

The views and opinions expressed in this article are not necessarily those of the National Science Foundation, the National Aeronautics and Space Administration, or any other agency of the United States Government.

Author’s address: SRI International, Computer Science Laboratory, 333 Ravenswood Avenue, Menlo Park CA 94025; email: shankar@csl.sri.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

©2009 ACM 0360-0300/2009/10-ART20 $10.00

DOI 10.1145/1592434.1592437 http://doi.acm.org/10.1145/1592434.1592437

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.
Automated theorem provers and interactive proof checkers have been associated with verification from the beginning [King 1969; King and Floyd 1970]. Jones [1992] covers the history of verification research. McCarthy [1963], who initiated the formal study of program verification, was also involved in the construction of one of the early proof checkers. The early nexus between verification and deduction is beautifully surveyed Elspas et al. [1972]. Hantler and King [1976] give a brief overview of the early results in program verification.

In the 1970s, several research groups began working on the use of theorem provers in verification. These included the Gypsy project at the University of Texas at Austin [Smith et al. 1988]; the Affirm project [Gerhart et al. 1980] at USC-ISI; the FDM project at System Development Corporation [Kemmerer 1980]; the Jovial Verifier [Elspas et al. 1979] and HDM [Robinson et al. 1979], and STP [Shostak et al. 1982] at SRI International; the Boyer–Moore prover [Boyer and Moore 1979] (initiated at the University of Edinburgh and later continued at Xerox PARC, SRI International, and the University of Texas at Austin); the LCF (Logic for Computable Functions) project [Gordon et al. 1979] (initiated at Stanford University and continued at the University of Edinburgh and the University of Cambridge); and the FOL [Weyhrauch 1980] and Stanford Pascal Verifier [Luckham et al. 1979] projects at Stanford University.

The basic problem in deduction is whether a statement is valid. If a statement has a proof in a sound proof system, then it is valid, and if the proof system is complete, then every valid statement does have a proof. If a statement is not valid, then it has a counterexample. In other words, its negation is satisfiable. The validity problem is decidable if there is a program that can, in principle, determine if a given statement is valid. Some logics are semi-decidable so that there is a program that does terminate with the right result when the given statement is valid, but it might not terminate on invalid statements.

The first part of the survey (Section 2) is a brief introduction to the logical formalisms that are used in automated deduction including propositional logic, equational logic, first-order logic, set theory, and higher-order logic. The second part (Section 3) covers satisfiability procedures for propositional logic and fragments of first-order logic including theories such as linear arithmetic, arrays, and bit vectors. Satisfiability procedures can be used as decision procedures to decide whether a given formula is valid. These are the workhorses of deductive verification. We then move on to proof search procedures (Section 4) which typically work in domains where the validity problem is not decidable. Most such procedures are uniform: the theory axioms are given as explicit inputs without assuming any special knowledge about the theory-specific symbols. In contrast, satisfiability procedures typically build in theory-specific techniques. Most verification problems tend to be theory intensive so that the applicability of uniform methods has been limited to problems that make heavy use of quantification. The third part of our survey (Section 5) describes interactive proof engines that can be used to develop a large body of mathematics through a sequence of definitions and lemmas. Proofs are developed interactively with varying degrees of automated support. Both satisfiability and proof search procedures can be usefully employed as automated tools in interactive proof construction. We conclude with some observations about the promising research directions for automated deduction.

Automated deduction tools can be used in a variety of ways in formal verification in applications ranging from modeling requirements and capturing program semantics to generating test cases and validating compiler optimizations. Automated deduction can be used to
(1) Capture and analyze software specifications and properties [Jones 1990; Spivey 1993].
(2) Formalize the mathematical background and domain knowledge used in reasoning about program correctness.
(3) Define the semantics of programming languages and logics [Gordon 1989].
(4) Discharge verification, termination and type correctness conditions [Naur 1966; Floyd 1967; King 1969; Owre et al. 1995; Detlefs et al. 1998; Gulwani and Tiwari 2006].
(5) Synthesize programs from the specification [Manna and Waldinger; Darlington 1981] or to refine them in stages to yield executable software [Abrial 1996; Smith 1990].
(6) Implement the operations needed to compute symbolic fixed points for finite and infinite-state systems [Cousot and Cousot 1977; Burch et al. 1992; Abdulla et al. 1996; Bultan et al. 1997; Delzanno and Podelski 2001; Jhala and Majumdar 2009].
(7) Construct and refine abstractions of systems guided by counterexamples [Saïdi and Graf 1997; Kesten and Pnueli 1998; Ball et al. 2001; Clarke et al. 2003; Wies et al. 2006].
(8) Generate test cases by solving constraints arising from the symbolic execution of a program [Boyer et al. 1975; King 1976; Clarke 1976; Hamon et al. 2004; Godefroid et al. 2005; Hierons et al. 2009].

These applications share many of the same basic deductive techniques. Automated deduction is a vast and growing field and there are hundreds of systems that support logic-based automated verification. Our survey covers a cross-section of the deductive techniques and tools that are used in verification, with a particular emphasis on satisfiability solvers. The exposition here is directed at nonexperts who are interested in a deeper understanding of the techniques of automated deduction. We mainly focus on those techniques that are relevant for formal verification. A recent book by Harrison [2009] contains a more comprehensive modern treatment of automated deduction.

2. MATHEMATICAL LOGIC

A strong facility with logic is an essential skill for a computer scientist. We review formal logic from the point of view of automated and semi-automated verification. We briefly introduce propositional logic, equational logic, first-order logic, and higher-order logic. A reader familiar with these topics can safely skip over this introduction. Good introductions to logic are available from several sources including Barwise’s article An Introduction to First-Order Logic [Barwise 1978b], and books by Kleene [1952, 1967]; Shoenfield [1967]; Boolos and Jeffrey [1989]; Enderton [1972]; Mendelson [1964]; Dalen [1983]; Fitting [1990]; Girard et al. [1989]; and Ebbinghaus et al. [1984].

The topic of logic in computer science is well covered in the book by Huth and Ryan [2000]. There are several handbooks including those on Mathematical Logic [Barwise 1978a], Philosophical Logic [Gabbay and Guenther 1983, 1984,1985], Logic in Computer Science [Abramsky et al. 1992a; Abramsky et al. 1992b], Theoretical Computer Science [van Leeuwen 1990], Automated Reasoning [Robinson and Voronkov 2001], Tableau Methods [D’Agostino et al. 1999], and a recent one on Satisfiability [Biere et al. 2009].

Gries and Schneider [1993] have observed that logic is the glue that binds together methods of reasoning, in all domains. Many different domains can be related through their interpretation within logic. Inference procedures for logic can be applied
to these embedded formalisms. Logic has been “unreasonably effective” in computer science [Halpern et al. 2001; Feferman 2006] with deep connections to computability, complexity, database theory, hardware design, and programming language semantics, as well as the formal specification and verification of hardware and software.

Mathematical logic is basic to the operation of verification tools. Verification tools make formal claims about software. We need a language in which these claims are expressed. We also need a calculus in which these claims are justified and combined to yield new claims. Logic is the calculus of computing. Within the purview of logic, there is a wide range of formalisms for dealing with different aspects of software. First, there is propositional logic, where the expressions are built from propositional variables using the connectives for conjunction, disjunction, negation, implication, and equivalence. Various modal and temporal logics extend propositional logic to reason about modalities like time, necessity, knowledge, and belief over propositions. First-order logic extends propositional logic to predicates and terms built from variables and function symbols, and serves as a formal foundation for arithmetic and set theory. Equational logic is a fragment of first-order logic that provides the foundation for algebraic reasoning using equalities. Higher-order logic allows quantification over functions and predicates and is suitable for modeling computation at varying levels of abstraction and for formalizing much of classical mathematics.

A logic consists of a formal language, a formal semantics, and a formal proof system. The language captures the rules for forming statements and circumscribes the range of concepts that can be expressed. The formal semantics defines the intended interpretation of the symbols and expressions used in these statements. The formal semantics can be used to identify different expressions that have the same interpretation. It fixes the meaning of certain symbols, for example, the logical connectives, and allows the meaning of other symbols, for example, variables and functions, to vary within certain bounds. The formal proof system is a framework of rules for deriving valid statements. While the textbook presentation of a proof system is usually minimalist, any practical system will employ quite sophisticated proof rules that can be justified in foundational terms. Many practical proof checking systems also allow new proof rules to be added when they can be explicitly justified in terms of existing ones.

Logic can be used in all kinds of interesting ways. It can highlight the limitations of a formal language by demonstrating that certain concepts are not definable in it. It can of course be used to prove theorems, and this is the use that will be most interesting here. Logic also has a dual use which is to generate concrete instances (models) of a given formula as in planning, constraint solving, and test case generation. At the metatheoretic level, relationships between logics can be used to map results from one logic to another, or to reduce problems from one logic to another [Tarski et al. 1971; Meseguer 1989].

2.1. Propositional Logic

Propositional logic plays an important role in digital hardware design as well as hardware and software verification. A proposition is a declarative statement such as “Mary has a book”. In propositional logic, the propositions are atomic so that “Mary has no book” is a separate proposition that is unrelated to the first. Basic propositions are just represented by propositional atoms or variables. Propositional formulas are built from propositional atoms using the logical operators ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⇒ (implication), and ⇔ (equivalence). In the classical interpretation, propositional formulas are evaluated with respect to a Boolean truth assignment of ⊤ or ⊥ to the atoms. A formula is satisfiable if there is some truth assignment under which the formula evaluates to ⊤. Thus, \(p \land (p \Rightarrow q) \) is satisfied by the truth
Automated Deduction for Verification

Language and Semantics. For our purpose, a propositional formula \(\phi \) is either an atom from a set \(\mathcal{A} \) of atoms, a negation \(\neg \phi_1 \), or a disjunction \(\phi_1 \lor \phi_2 \). Conjunction, implication, and equivalence can be easily defined from negation and disjunction. A structure or a truth assignment \(M \) maps atoms in \(\mathcal{A} \) to truth values from the set \{\(\top \), \(\bot \)\}. The truth table semantics for the connectives is given in Figure 1 by defining \(\neg \) and \(\lor \).

The interpretation of a formula \(\phi \) with respect to a structure \(M \) is given by \(M[\phi] \) as defined below.

\[
M[p] = M(p), \text{ for } p \in \mathcal{A} \\
M[\neg \phi] = \neg M[\phi] \\
M[\phi_1 \lor \phi_2] = M[\phi_1] \lor M[\phi_2]
\]

A structure \(M \) is a model for a formula \(\phi \), that is, \(M \models \phi \), if \(M[\phi] = \top \). A formula \(\phi \) is satisfiable if for some structure \(M \), \(M \models \phi \). A formula \(\phi \) is valid if for all structures \(M \), \(M \models \phi \). For example, the formula \(p \land \neg q \) is satisfied in the model \(\{p \mapsto \top, q \mapsto \bot\} \). The formula \(p \lor \neg p \) is valid, and its negation \(\neg(p \lor \neg p) \) is unsatisfiable.

Normal Forms. Formulas can be transformed into equivalent forms that are more convenient for syntactic manipulation. We first introduce conjunction into the language, a formula in classical propositional logic. The negation normal form (NNF) applies rules like \(\neg(p \land q) = \neg p \lor \neg q \), \(\neg(p \lor q) = \neg p \land \neg q \), and \(\neg\neg p = p \) to ensure that only atoms can appear negated. An atom or its negation is termed a literal. A clause is a disjunction of literals. Any formula can be converted to conjunctive normal form (CNF) where it appears as a conjunction of clauses. Dually, a formula can also be expressed in disjunctive normal form (DNF) where it appears as a disjunction of cubes, where a cube is a conjunction of literals. For example, the formula \(\neg(p \lor q) \lor \neg(p \lor \neg q) \) can be converted into the NNF \((\neg p \land \neg q) \lor (p \land q) \). The latter formula is already in DNF. It can be converted into CNF as \((\neg q \lor p) \land (\neg p \lor q) \), which happens to be the \((\neg, \lor) \)-formula representing \(p \leftrightarrow q \). The conversion of a propositional formula to an equisatisfiable CNF can be done in linear time by introducing new propositional atoms to represent subformulas. Practical algorithms for CNF conversion try to minimize the number of clauses generated by identifying equivalent subformulas [Tseitin 1968; Jackson and Sheridan 2004; Manolios and Vroon 2007].

Intuitionistic Logic. In contrast to the classical interpretation of the logical connectives described above, intuitionistic logic [Troelstra and van Dalen 1988] disallows the
classically valid rules of the excluded middle \(p \lor \neg p \) and double negation elimination \(\neg \neg p \Rightarrow p \). Whereas classical logic is about proving that a formula is valid in all interpretations, intuitionistic logic is about supporting the conclusion with actual evidence. Thus, \(p \lor \neg p \) is classically valid, but evidence for a disjunction must be either evidence for \(p \) or for \(\neg p \), and we do not have such evidence. Similarly, evidence for \(\neg p \) shows that any evidence for \(p \) can be used to construct a contradiction. Then, evidence for \(\neg \neg p \) demonstrates the absence of evidence for \(\neg p \), which is not taken as evidence for \(p \). The excluded middle rule allows nonconstructive proofs of existence as is illustrated by the following demonstration that there exist irrational numbers \(x \) and \(y \) such that \(x^y \) is rational. Either \(\sqrt[2]{2} \) is rational, in which case, \(x \) and \(y \) can both be taken as \(\sqrt[2]{2} \), or we pick \(x \) to be \(\sqrt[3]{2} \) and \(y \) to be \(\sqrt[2]{2} \) so that \(x^y \) is just \(\sqrt[2]{2} \) which simplifies to 2.

We have demonstrated the existence of \(x \) and \(y \) without providing a construction since we do not have a method for determining whether \(\sqrt[2]{2} \) is rational. We survey some interactive proof checkers for intuitionistic proofs in Section 5.3.2.

Proof Systems for Propositional Logic. In Hilbert-style proof systems, each inference rule has zero or more premise formulas and one conclusion formula, and a proof is a tree of inference rule applications. The rule of modus ponens which derives \(\vdash \psi \) from the premises \(\vdash \phi \) and \(\vdash \phi \Rightarrow \psi \) is a typical Hilbert-style rule. In the natural deduction style due to Gentzen [Szabo 1969], proof rules involve conditional judgments that assert the derivability of a consequent formula from some assumption formulae. The inference rules of natural deduction indicate how compound consequent formulas such as conjunctions, disjunctions, and implications are introduced or eliminated in a proof. Natural deduction judgements have the form \(\Gamma \vdash \phi \) where \(\Gamma \) is a set of assumptions and \(\phi \) is the consequent formula. The proof rules for implication and conjunction are shown in Figure 2. Apart from the axiom rule, the proof rules consist of introduction and elimination rules for connectives in the consequent formula. Natural deduction rules with proof terms are shown in Figure 14 and the exact form of these rules is explained in Section 5.3.2.

Gentzen’s sequent calculus shown in Figure 3 has a Hilbert-style inference form but the premises and conclusions are sequents, which are of the form \(\Gamma \vdash \Delta \), where \(\Gamma \) is a finite set of antecedent formulas and \(\Delta \) is a finite set of consequent formulas. A sequent \(\Gamma \vdash \Delta \) asserts that the conjunction of the formulas in \(\Gamma \) implies the disjunction of the formulas in \(\Delta \). Hence, if a sequent is not valid, then there is an interpretation under which all the formulas in \(\Gamma \) evaluate to \(\top \) and all the formulas in \(\Delta \) evaluate to \(\bot \). Figure 3 displays the rules for \(\neg, \lor, \land, \text{ and } \Rightarrow \). While the natural deduction proof rules introduce connectives in both antecedent and consequent formulas, the sequent calculus has, for each connective, an introduction rule for antecedent formulas (left rule) and another one for consequent formulas (right rule). The rules for \(\Rightarrow \) and \(\land \) could easily be derived from their definitions in terms of \(\neg \) and \(\lor \), but in the sequent calculus, the connectives are defined by their proof rules.
For example, the validity of Peirce’s law \(((p \Rightarrow q) \Rightarrow p) \Rightarrow p\) in classical propositional logic can be demonstrated semantically by the truth-table method, or it can be proved in the sequent calculus.

\[
(p \Rightarrow q) \Rightarrow p \Rightarrow p
\]

The cut rule of the sequent calculus is admissible in terms of the remaining inference rules, that is, if the premises are provable, then so is the conclusion of the cut rule. Note that the cut rule is not derivable, that is, the conclusion cannot be proved from the premises without the use of the cut rule. Every derivable rule is also admissible.

The equivalence rule

\[
\phi \Leftrightarrow \phi [p \mapsto \psi]
\]

where \(\phi[p \mapsto q]\) is the result of substituting the proposition \(q\) for \(p\) in \(\phi\) is an example of a derived rule.

An intuitionistic sequent calculus is obtained from the classical one by restricting the consequents in any sequent in a proof to at most one formula. It can be checked, for example, that Peirce’s formula is not provable with this restriction since the proof requires a sequent of the form \(\Gamma \vdash p, p \Rightarrow q\).

Soundness and Completeness. For soundness, every provable statement must be valid. For the sequent calculus, this can be shown by induction on proofs since each axiom is valid and each proof rule asserts a valid conclusion when given valid premises. Note that a sequent \(\Gamma \vdash \Delta\) is valid if for any interpretation \(M\), either \(M \not\models \gamma\) for some \(\gamma \in \Gamma\) or \(M \models \delta\) for some \(\delta \in \Delta\).

A proof calculus is complete if every valid statement is provable. In particular, if formula \(\phi\) does not have a proof, then there is an \(M\) such that \(M \not\models \neg \phi\). There are several ways to prove completeness. One way is to start with a set \(H\) which is initially set to \{\neg \phi\} and an enumeration of the formulas \(\psi_i, i \geq 0\). We say that a \((\neg, \lor)\)-formula \(\psi\) is consistent with \(H\) if \(\not\models (\lor_{\psi \in H} \neg \psi) \lor \neg \psi\) in the proof calculus. For each \(\psi_i\), if \(\psi_i\) is consistent with \(H\), we add \(\psi_i\) to \(H\), and otherwise we add \(\neg \psi_i\). We can then check with
respect to the proof system that

1. If $\psi \in H$ then $\neg \psi \not\in H$
2. If $\neg \psi \in H$ then $\psi \not\in H$
3. If $\psi \lor \psi' \in H$, then either $\psi \in H$ or $\psi' \in H$.

Note that for each atom p, either p or $\neg p$ is in H. We construct the model M_H so that $M_H(p) = \top$ if and only if $p \in H$. It is easy to check that for each formula $\psi \in H$, $M_H \models \psi$. In particular, we have $M_H \models \neg \phi$.

Modal Logics. Propositional logic captures reasoning over truth assignments to the propositions. In particular, a statement is valid if it holds for all possible truth assignments. Modal logics admit modal operators for concepts such as possibility, belief, and time that are indexed by truth assignments (worlds). A Kripke model consists of a set of worlds with an accessibility relation between worlds. The modality $\Box \phi$ when evaluated in a world w signifies that ϕ holds in all the worlds w' accessible from w. Dually, $\Diamond \phi$ holds in w if there is an accessible w' where ϕ holds. Most modal logics contain the inference rules of modus ponens, substitution, and necessitation

\[
\frac{p}{\Box p}.
\]

They also satisfy the distributivity axiom K: $\Box(p \Rightarrow q) \Rightarrow \Box p \Rightarrow \Box q$. With a reflexive accessibility relation, we get the logic T corresponding to the axiom $\Box p \Rightarrow p$. A reflexive and transitive accessibility relation yields $S4$ with the added axiom $\Box p \Rightarrow \Box \Box p$. The modal logic $S5$, where the accessibility relation is an equivalence relation (i.e., reflexive, symmetric, and transitive), is obtained by adding the axiom $p \Rightarrow \Box \Diamond p$ to $S4$. Naturally, the valid formulas of T are a subset of those of $S4$, which are in turn a subset of those of $S5$.

Several modal logics are widely used in formal verification including those for linear time LTL, branching time CTL, the logic CTL*, which combines branching and linear time logics, interval temporal logics, real-time temporal logics, dynamic logic, epistemic logics, and deontic logics. Satisfiability procedures for modal logic can be constructed either directly or through a translation into another decidable logic such as the guarded fragment of first-order logic where the quantified variables must appear in an atomic guard formula, or to the weak second order logic of two successors (WS2S) [Ohlbach et al. 2001]. Modal and temporal logics are surveyed by Goldblatt [1992], Mints [1992], Emerson [1990], and Blackburn et al. [2002].

Applications. Propositional logic has innumerable applications since any problem over a bounded domain can be expressed in it and the resulting formula can be solved for satisfiability. Solvable variants of satisfiability include the problems of generating all satisfying solutions (AllSAT), unsatisfiable cores consisting of the smallest unsatisfiable subset of input clauses, and the largest subset of satisfiable clauses (MAXSAT), are also solvable.

Propositional logic can be used to model electrical circuits by representing the presence of a high voltage on a wire as a proposition. A half adder with inputs a and b and output s_{out} can be represented as $s_{out} = (a \oplus b)$, where \oplus is the exclusive-or operator so that $a \oplus b$ is defined as $(a \Rightarrow \neg b) \land (\neg b \Rightarrow a)$. An n-bit adder that adds two n-bit bit-vectors \vec{a} and \vec{b} with a carry-in bit c_{in} to produce an n-bit sum s_{out} and a carry-out bit c_{out} can be defined using the half adder to produce the sum and carry in a bit-wise manner.

Constraints over finite domains can be expressed in propositional logic. For example, the pigeonhole principle asserts that it is impossible to assign $n + 1$ pigeons to n holes so
that there is at most one pigeon per hole. For this, we need \(n(n+1) \) atoms \(p_{ij} \) for \(0 \leq i < n \) and \(0 \leq j \leq n \) expressing the proposition that the \(i \)th hole holds the \(j \)th pigeon. We can assert that each pigeon is assigned a hole as \(\bigwedge_{j=0}^{n-1} \bigvee_{i=0}^{n} p_{ij} \). The constraint that no hole contains more than one pigeon is expressed as \(\bigwedge_{i=0}^{n-1} \bigwedge_{j<k} (\neg p_{ij} \lor \neg p_{ik}) \).

Planning is another application of constraint solving in the Boolean domain [Kautz and Selman 1996]. Consider the problem of planning truck routes to transfer packages between cities given the initial location of each truck and its fuel gauge reading, the source and destination of each package, the routes connecting the cities with the fuel needs, and the locations of the gas stations. The goal is to find the shortest plan that gets the packages delivered where in each step of the plan, a truck can load a package, unload a package, fill gas, or drive between two adjacent cities.

Scheduling is similar to planning and can also be encoded by means of a propositional formula. For example, consider the problem of constructing a timetable for a sports league consisting of \(n \) teams that must each play \(n/2 \) home games and \(n/2 \) away games so that each team plays every other team at least once and never has more than two away games in a row.

Program behavior for programs where the program state can be encoded using a bounded number of bits can also be modeled using propositional logic [Kroening et al. 2003]. For example, a program that computes the absolute value of a 32-bit two’s-complement word can be verified purely in Boolean terms. That is, given a procedure \(\text{abs} \) on a 32-bit bit-vector \(\vec{x} \), we can check that

\[
\vec{y} = \text{abs}(\vec{x}) \Rightarrow (\vec{y} \geq 0 \land (\vec{y} = \vec{x} \lor \vec{y} = -\vec{x})).
\]

More generally, a state of bounded size can be represented as a bit-vector of length \(n \). The initial state of the program can be specified by a state predicate \(I \). The (possibly nondeterministic) transition relation for the program can be encoded as a relation \(N \) on the state bit-vectors. In bounded model checking [Biere et al. 1999; D’Silva et al. 2008], we want to check that the property \(P \) is not violated within \(k \) steps by verifying that

\[
I(\vec{x}_0) \land \bigwedge_{i=0}^{k-1} N(\vec{x}_i, \vec{x}_{i+1}) \land \left(\bigvee_{j=0}^{k} \neg P(\vec{x}_j) \right)
\]

is not satisfiable. If this formula turns out to be satisfiable, we can construct a sequence of states \(\xi_0, \ldots, \xi_k \) from the Boolean assignment to each Boolean variable \(\vec{x}_i[j] \), for \(0 \leq i \leq k \) and \(0 \leq j < n \). The Cook-Levin theorem [1971, 1973] showing that polynomial-bounded Turing machine computations can be reduced in polynomial time to propositional satisfiability can be seen as form of bounded model checking of Turing machines over \(p(n) \) steps with a state consisting of an array of \(2p(n) \) tape symbols, a control state, and a head position.

Given some representation of state, a transition system is a pair \(\langle I, N \rangle \) of an initialization predicate \(I \) on the state and a transition relation \(N \) between the states before and after the transition. A state predicate \(P \) is an invariant for the transition system if for any infinite state sequence \(\xi \) of the form \(\langle \xi_0, \xi_1, \xi_2, \ldots \rangle \), the assertion \(I(\xi_0) \land ((\forall i. N(\xi_i, \xi_{i+1})) \Rightarrow \forall i. P(\xi_i)) \) is valid. We can check that a predicate \(P \) is inductive by verifying that \(I(\vec{x}) \Rightarrow P(\vec{x}) \) and \(P(\vec{x}) \land N(\vec{x}, \vec{x}') \Rightarrow P(\vec{x}') \) are both valid. An inductive predicate is an invariant, but not all invariants are inductive. Invariant checking can be strengthened through the use of \(k \)-induction [Sheeran et al. 2000] to check that state predicate \(P \) is \(k \)-inductive. Here, the base case is exactly the bounded model checking.
step above, and the induction step is

\[\bigwedge_{i=0}^{k} N(\vec{x}_i, \vec{x}_{i+1}) \land \left(\bigwedge_{j=0}^{k} P(\vec{x}_j) \right) \Rightarrow P(\vec{x}_{k+1}). \]

A \(k \)-inductive predicate is also an invariant.

For symbolic model checking [Burch et al. 1992; McMillan 1993; Clarke et al. 1999], the set of reachable states is computed by representing the state at each iteration as a propositional formula \(R_i \) so that \(R_0 = I(\vec{x}) \) and \(R_{i+1} = \text{image}(N(\vec{x}, \vec{x}'))(R_i) \), where \(\text{image}(\phi)(\psi) = (\exists \vec{x}''.(\phi \land \psi)(\vec{x} \mapsto \vec{x}'')(\vec{x}'' \mapsto \vec{x})), \) where \(\phi \) is a formula over the variables \(\vec{x}, \vec{x}', \psi \) is over \(\vec{x} \), and \((\vec{x} \mapsto \vec{x}') \) is shorthand for the substitution \(\{x'_1 \mapsto x_1, \ldots, x'_n \mapsto x_n\} \). The fixed point in the iteration is reached when \(R_{i+1} \Leftrightarrow R_i \). Symbolic model checkers use representations of propositional formulas such as reduced ordered binary decision diagrams [Bryant 1992] for representing and computing images and fixed points efficiently and compactly. The image computation can also be done using a variant of AllSAT. A different use of bounded model checking based on the construction of interpolants has proved to be quite effective in building over-approximations of the reachable state space [McMillan 2003]. Different approaches to symbolic model checking based on propositional satisfiability are surveyed and compared by Amla et al. [2005].

Bounded model checking can also be used for generating test cases corresponding to paths through the control flow graph [Hamon et al. 2005; Godefroid et al. 2005]. This is done by checking the satisfiability of the conjunction of conditions and transitions corresponding to the path. If it is satisfiable, a test case is generated as a satisfying assignment. If not, we know that the path is infeasible. The same approach can also be used to modify an existing test case to direct the computation along a different symbolic path.

Propositional logic is useful for model finding over a bounded universe. The Alloy language and system translate the problem of model finding in a first-order logic over relations to propositional satisfiability [Jackson 2006]. In Alloy, the variables range over \(m \)-ary relations over a bounded universe of cardinality \(n \). The term language allows relations to be constructed using operations such as union, intersection, transposition, join, comprehension, and transitive closure. The basic predicates over these relational terms are those of subset, emptiness, and singularity. As we saw with the pigeonhole example, an \(m \)-ary relation over a universe of cardinality \(n \) can be represented by \(n^m \) propositional atoms and constants. The relational operations are defined using matrices. The resulting formulas are then translated to Boolean form for satisfiability checking. Many problems over sets and relations exhibit symmetry. It is therefore enough to look for just one model in each equivalence class given by a partitioning of the universe with respect to symmetry. By searching for models over a finite universe, Alloy is able to detect the presence of bugs and anomalies in specifications and programs [Torlak and Jackson 2007].

2.2. First-Order Logic

In propositional logic, the propositions are treated as atomic expressions ranging over truth values. Thus, the proposition “Mary has a book” is either true or false. First-order logic admits individual variables that range over objects such as “Mary”, predicates such as \(\text{Book}(x) \) that represents the claim that the variable \(x \) is a book, and relations such as \(\text{Has}(y, x) \) that expresses the claim that person \(y \) has object \(x \). It also has existential quantification to represent, for example, the proposition “Mary has a book” as \(\exists x. \text{Book}(x) \land \text{Has}(\text{Mary}, x) \). Universal quantification can be used to express the claim
“Mary has only books” as $\forall x.\text{Has}(\text{Mary}, x) \Rightarrow \text{Book}(x)$. First-order logic also has function symbols that can be used to assert, for example, that “Mary’s father has a book”, by writing $\exists x.\text{Book}(x) \land \text{Has}(\text{father}(\text{Mary}), x)$.

The equality relation has a special role in first-order logic. It can be treated as a relation that satisfies certain axioms, or it can be treated as a logical symbol with a fixed interpretation. We take the latter approach and present first-order logic as a series of increasingly expressive fragments. A first-order language is built from a signature Σ with a fixed interpretation. We take the latter approach and present first-order logic as a series of increasingly expressive fragments. A first-order language is built from a signature $\Sigma[X]$ where Σ contains function and predicate symbols with associated arities and X is a set of variables.

The signature $\Sigma[X]$ can be used to construct terms and formulas, where x ranges over the variables in X, f ranges over the n-ary function symbols in Σ, and p ranges over the n-ary predicate symbols in Σ.

—Terms $t := x \mid f(t_1, \ldots, t_n)$
—Formulas $\psi := p(t_1, \ldots, t_n) \mid t_0 = t_1 \mid \neg \psi_0 \mid \psi_0 \lor \psi_1 \mid \psi_0 \land \psi_1 \mid (\exists x.\psi_0) \mid (\forall x.\psi_0)$

Given a first-order signature Σ (ignoring variables), a first-order Σ-structure M consists of

—A non-empty domain $|M|$
—A map $M(f)$ from $|M|^n \rightarrow |M|$, for each n-ary function symbol $f \in \Sigma$
—A map $M(p)$ from $|M|^n \rightarrow \{\top, \bot\}$, for each n-ary predicate symbol p.

For example, if $\Sigma = \{0, +, <\}$, then we can define a Σ-structure M such that $|M| = \{a, b, c\}$ and $+$ is interpreted as addition modulo 3, where a, b, and c represent 0, 1, and 2, respectively.

$$M(0) = a$$
$$M(+) = \begin{cases} \{\langle a, a, a\rangle, \langle a, b, b\rangle, \langle a, c, c\rangle, \langle b, a, b\rangle, \langle c, a, c\rangle\} & \text{if } n = 2 \\ \{\langle b, b, c\rangle, \langle b, c, a\rangle, \langle c, b, a\rangle, \langle c, c, b\rangle\} & \text{if } n = 3 \end{cases}$$
$$M(<)(x, y) = \begin{cases} \top, \text{if } (x, y) \in \{(a, b), (b, c)\} \\ \bot, \text{otherwise.} \end{cases}$$

A $\Sigma[X]$-structure M also maps variables in X to domain elements in $|M|$. The interpretation $M[s]$ of a $\Sigma[X]$-term s as an element of $|M|$ is defined as

$$M\llbracket x \rrbracket = M(x)$$
$$M\llbracket f(t_1, \ldots, t_n) \rrbracket = M(f)(M\llbracket t_1 \rrbracket, \ldots, M\llbracket t_n \rrbracket)$$

Given a $\Sigma[X]$-structure M, let $M[x \mapsto a]$ be a structure that maps x to a but behaves like M, otherwise. The interpretation $M\llbracket \phi \rrbracket$ of a $\Sigma[X]$-formula ϕ in a $\Sigma[X]$-structure M is defined as

$$M \models s = t \iff M\llbracket s \rrbracket = M\llbracket t \rrbracket$$
$$M \models p(t_1, \ldots, t_n) \iff M\llbracket p(t_1, \ldots, t_n) \rrbracket = \top$$
$$M \models \neg \psi \iff M \not\models \psi$$
$$M \models \psi_0 \lor \psi_1 \iff M \models \psi_0 \text{ or } M \models \psi_1$$
$$M \models \psi_0 \land \psi_1 \iff M \models \psi_0 \text{ and } M \models \psi_1$$
$$M \models (\forall x.\psi) \iff M[x \mapsto a] \models \psi, \text{ for all } a \in |M|$$
$$M \models (\exists x.\psi) \iff M[x \mapsto a] \models \psi, \text{ for some } a \in |M|.$$
For example, the following claims hold of the \(\Sigma \)-structure given above, where \(\Sigma = \{0, +, <\} \).

1. \(M \models (\forall x, y. (\exists z. + (y, z) = x)) \).
2. \(M \not\models (\forall x. (\exists y. x < y)) \).
3. \(M \models (\forall x. (\exists y. x + (x, y) = x)) \).

A \(\Sigma[X] \)-formula \(\phi \) is **satisfiable** if there is a \(\Sigma[X] \)-structure \(M \) such that \(M \models \phi \), that is, \(M \) is a **model** for \(\phi \). Otherwise, the formula \(\phi \) is **unsatisfiable**. The set of **free variables** in a formula \(\phi \) is given by \(\text{vars}(\phi) \). For example, the set of free variables of the formula \((\forall x. x < y) \lor (\exists y. x < y) \) is \(\{x, y\} \). A formula with an empty set of free variables is a **sentence**. For a sequence of variables \(x_1, \ldots, x_n \) abbreviated as \(\bar{x} \), let \(\exists \bar{x}. \phi \) represent \(\exists x_1 \cdots \exists x_n \phi \). If a formula \(\phi \) is satisfiable, so is its existential closure \(\exists \bar{x}. \phi \), where \(\bar{x} \) is a sequence consisting of the variables in \(\text{vars}(\phi) \). A \(\Sigma[X] \)-formula \(\phi \) is **valid** if \(M \models \phi \) in every \(\Sigma[X] \)-structure. If a formula \(\phi \) is unsatisfiable, then the negation of its existential closure \(\neg \exists \bar{x}. \phi \) is valid, for example, \(\neg(\forall x. (\exists y. x < y)) \). Note that if \(\phi \land \neg \psi \) is unsatisfiable, \(\phi \Rightarrow \psi \) is valid.

We introduce the proof theory of first-order logic in a series of fragments. Propositional logic is the fragment of first-order logic where there are no terms and all predicate symbols are \(0 \)-ary. The proof rules from Figure 3 however apply not just to propositional logic but to the propositional skeleton of formulas where the atoms can be **atomic formulas** which include both atoms of the form \(s = t \) and \(p(t_1, \ldots, t_n) \) for an \(n \)-ary predicate \(p \), as well as quantified formulas.

The set of sequent calculus proof rules shown in Figure 4 introduces equality with rules for reflexivity, symmetry, transitivity, and congruence.

These rules in sequent form lack the symmetry of the inference rules for the propositional connectives. Reflexivity is presented as an axiom, that is, a rule with no premises, whereas symmetry, transitivity, and function and predicate congruence are presented as proof rule schemas, that is, there is a congruence rule for each application of a function or predicate symbol to a sequence of terms. These congruence rules can also be captured by the axiom scheme \(a_1 = b_1, \ldots, a_n = b_n \vdash f(a_1, \ldots, a_n) = f(b_1, \ldots, b_n) \), for each \(n \)-ary function symbol \(f \), and the axiom scheme \(a_1 = b_1, \ldots, a_n = b_n, p(a_1, \ldots, a_n) \vdash p(b_1, \ldots, b_n) \), for each \(n \)-ary predicate symbol \(p \).

Equational Logic. This is a fragment of first-order logic restricted to equality judgments which are sequents of the form \(E \vdash a = b \), where \(E \) is a set of equations, each of which is implicitly universally quantified [Burris and Sankappanavar 1981]. A natural deduction presentation of equational logic is given by the rules in Figure 5. A substitution \(\sigma \) maps variables to terms so that \(f(a_1, \ldots, a_n)\sigma = f(a_1\sigma, \ldots, a_n\sigma) \). Equational
logic is sound and complete in the sense that \(E \vdash a = b \) is derivable iff every model of \(E \) is a model of \(a = b \). Many theories such as semigroups, monoids, groups, rings, and Boolean algebras can be formalized in equational logic. Term rewriting systems [Baader and Nipkow 1998] can be used to prove equalities in certain equational theories.

McCune’s celebrated proof of the Robbins conjecture with the EQP theorem prover is an exercise in equational logic. Given a binary operator \(+ \) and a unary operator \(n \) such that \(+ \) is associative and commutative, a Robbins algebra satisfies Robbins’s equation

\[
n(n(x + y)) + n(x + n(y)) = x,
\]

whereas a Boolean algebra satisfies Huntington’s equation

\[
n(n(x + y)) + n(n(x) + n(y)) = x.
\]

The question of whether Robbins’s equation implied Huntington’s equation remained open for sixty years until McCune [1997] used EQP to show that Robbins’s equation does imply Huntington’s equation. The actual proof shows that Robbins’s equation implies \(\exists C. \exists D. n(C + D) = n(C) \), which was already known to imply Huntington’s equation. The existential quantification suggests that this proof is beyond equational logic, but the actual proof demonstrates a specific \(C \) and \(D \), that can be used to construct an equational proof (see http://www.cs.unm.edu/~mccune/ADAM-2007/robbins/).

First-Order Logic. The next step is to introduce quantification. We have already seen the limited use of quantification in the equational logic framework where the equations in \(E \) are implicitly universally quantified. The sequent proof rules for the universal and existential quantifiers are given in Figure 6. In any application of the \(\forall \)-right and \(\exists \)-left rules, the constant \(c \) that appears in the premise sequents must be chosen so that it does not appear in the conclusion sequent. With this proviso, it is easy to check that the inference rules are sound. If the premise of the \(\forall \)-left rule is valid because \(M \models A(x \rightarrow t) \models \bot \), then \(M \models \forall x. A \models \bot \) also holds. In the \(\forall \)-right rule, if the conclusion is not valid because there is an \(M \) such that \(M \models y \models \top \) for each \(\gamma \in \Gamma \), \(M \models \delta \models \bot \) for each \(\delta \in \Delta \), and \(M \models \forall x. A \models \bot \), then for some \(a \) in \(|M| \), \(M \models [x \mapsto a] A \models \bot \). In this case, the premise is also invalid because \(M \models [c \mapsto a] A(x \mapsto c) \models \bot \).
We show that any consequent is not provable, has a model. For this, we start with Henkin 1949, 1996; Shoenfield 1967, we must show that whenever a sequent ϕ is not provable, then the set of sentences $\Gamma \cup \neg \phi$ has a Σ-model. We show that any consistent set of sentences Γ, that is, where $\Gamma \vdash \emptyset$ (with an empty consequent) is not provable, has a model. For this, we start with $\Sigma_0 = \Sigma$ and $\Gamma_0 = \Gamma$ and introduce a fresh constant c_0 for each existential Σ_0 sentence ϕ of the form $\exists x. \psi$ along with the Henkin axioms $(\exists x. \psi) \Rightarrow \psi[x \mapsto c_0]$ to obtain Σ_1 and Γ_1. Iterating the addition of constants so that $\Sigma_{i+1} = \Sigma_i \cup C_i$, where C_i is the set of constants c_0 for each Σ_i-sentence $\exists x. \psi$ that is not a Σ_{i-1}-sentence. Similarly, $\Gamma_{i+1} = \Gamma_i \cup ((\exists x. \psi) \Rightarrow \psi[x \mapsto c_0])|c_0 \in C_i$.

Let $\hat{\Gamma}$ denote $\cup \Gamma_i$, the result of adding all the Henkin constants and axioms to Γ. As with the completeness proof in Section 2.1, page 8, we order the sentences in $\hat{\Gamma}$ into a sequence ϕ_0, ϕ_1, \ldots and define Θ_0 so that $\Theta_0 = \Gamma'$, and $\Theta_{i+1} = \Theta_i \cup \{\phi_i\}$ if $\Theta_i \cup \neg \phi_i$, and $\Theta_{i+1} = \Theta_i \cup \{\neg \phi_i\}$, otherwise. It can be shown that the set Θ is consistent. Moreover, note that for any $\phi_1 \lor \phi_2$ in Θ, either ϕ_1 or ϕ_2 is in Θ. Also, whenever ϕ of the form $\exists x. \phi_1$ is Θ, then $\phi_1[x \mapsto c_j]$ is in Θ. Exactly one of ϕ or $\neg \phi$ is in Θ. This means that we can read off a model from Θ where the domain consists of the equivalence classes of the ground (i.e., variable-free) terms with respect to the equalities in Θ, and the ground atoms in Θ are all assigned true.

A sentence ϕ in first-order logic can be converted into the equivalent prenex normal form: a first-order formula of the form $Q_1x_1 \ldots Q_nx_n.\psi$, where each Q_i is either a universal or an existential quantifier and ψ is a quantifier-free formula. This is done by applying equivalence-preserving transformations to move the quantifiers outwards so that $(Q x. \phi) \equiv \psi$ becomes $(Q y. \phi[x \mapsto y] \equiv \psi)$ for a variable y that does not occur free in ψ, where \equiv is either \land or \lor, and Q is either \forall or \exists. Similarly, $\neg \forall x. P$ becomes $\exists x. \neg P$, and $\neg \exists x. P$ becomes $\forall x. \neg P$. A prenex sentence can be placed in an equivalent Skolemized form by iteratively replacing the existential quantifiers in the formula by Skolem functions as follows. Let Q_i be the first existential quantifier in the prefix of the formula so that it is preceded by the universally quantified variables x_1, \ldots, x_{i-1}. We then transform $\forall x_1, \ldots \forall x_{i-1} \exists x_i. \psi$ to $\forall x_1, \ldots \forall x_{i-1}. \psi[x_i \mapsto f_i(x_1, \ldots, x_{i-1})]$, where f_i is a freshly chosen (Skolem) function symbol. By successively eliminating existential quantifiers in this manner, we arrive at a formula of the form $\forall x_1, \ldots, x_m. \psi$ that is equisatisfiable with ϕ, where ψ is a quantifier free formula and x_1, \ldots, x_n are the universally quantified variables from x_1, \ldots, x_n.

The Herbrand theorem [Herbrand 1930] asserts that such a sentence $\forall x_m. \psi$ is unsatisfiable iff there some Herbrand expansion of the form $\psi_1 \land \cdots \land \psi_k$ that is unsatisfiable, where each ψ_i is of the form $\psi[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n]$ for Herbrand terms t_i. The Herbrand terms are those built from fresh variables and the function symbols occurring in ψ.

First-order logic has a number of other interesting metatheoretic properties. A set of first-order sentences is satisfiable if every finite subset of it is (compactness). A countable set of sentences with an infinite model has a model of any infinite cardinality (Löwenheim-Skolem theorem). The amalgamation theorem for first-order logic yields a way of constructing an amalgamated model from two compatible models over possibly overlapping signatures [Hodges 1997]. Meta-theorems like the Robinson joint consistency theorem, the Craig interpolation theorem, and the Beth definability theorem are corollaries of the amalgamation theorem. Church [1936] and Turing [1965] showed that the problem of deciding validity for first-order logic sentences is undecidable. The halting problem for Turing machines, which is easily seen to be unsolvable, can be expressed in first-order logic.
First-Order Theories. Given a signature Σ, a Σ-theory is a set of first-order sentences Γ closed under entailment, that is, for any Σ-formula ϕ, if for all Σ-structures M such that $M \models \psi$ for each $\psi \in \Gamma$, it is the case that $M \models \phi$, then $\phi \in \Gamma$. A first-order Σ-theory can be equivalently given by a set of Σ-models \mathcal{M} closed under isomorphism and variable reassignment, in which case it corresponds to the set Γ of first-order Σ-sentences that are valid in each of the models in \mathcal{M}. A theory Γ is finitely axiomatizable if the sentences in Γ are entailed by some finite subset of Γ. Many theories are finitely axiomatizable, and several of these are even equational. Theories that are not finitely axiomatizable can still be recursively axiomatizable so that the axioms can be distinguished from non-axioms by a program. A theory is complete if for each sentence ϕ, either ϕ or $\neg \phi$ is in the theory. A theory is decidable if there is a program that can distinguish sentences in the theory from those that are not. First-order theories can be shown to be decidable by directly presenting a decision procedure or by interpreting the theory within another theory that is known to be decidable. One typical way of showing decidability is by showing that it admits quantifier elimination so that any subformula $\forall x. \phi \lor \exists x. \phi$ with a quantifier-free ϕ can be replaced by an equivalent quantifier-free formula $\hat{\phi}$. The word problem (WP) for a theory is that of checking if $\forall p$ is valid in the theory for an atom p. The uniform word problem (UWP) for a theory is that of determining if the sentence $\forall \bigwedge \Gamma \Rightarrow p$ is valid in the theory, for a finite set of atoms Γ and an atom p. The clausal validity problem (CVP) for a theory is that of determining if $\forall (\bigvee \Gamma)$ is valid in the theory, where Γ is a finite set of atoms and negations of atom. A solution to the CVP for a theory would also solve the corresponding UWP, and one for the UWP for a theory would also solve the WP.

We briefly enumerate a few interesting first-order theories.

—The theory of identity in the empty signature has no axioms and can be used to make assertions about the minimum or maximum number of distinct elements in a model. If a sentence ϕ with r variables is satisfiable, then it is satisfiable in a model that contains no more than r elements. This theory therefore has the finite model property and is hence decidable.

—The empty theory over Σ is essentially first-order logic without axioms. This theory is undecidable. Any finitely axiomatizable first-order theory T can be expressed in this fragment since the validity of ϕ in T is equivalent to the validity of $\Gamma \models \phi$ in the empty theory, where Γ is the finite set of axioms. Certain fragments of this theory are decidable. For example, the validity of a sentence with k monadic predicates and r variables is decidable by checking with models of size at most $2^k r$, but adding even a single two-place predicate renders the fragment undecidable [Boolos and Jeffrey 1989]. The Bernays-Schönfinkel fragment is of the form $\exists x_1, \ldots, x_m. \forall y_1, \ldots, y_n. \phi$ where ϕ is a quantifier-free formula. The validity of such a formula is decidable if given a set of m distinct fresh constants c_1, \ldots, c_n, and a sequence v_1, \ldots, v_n of these constants, the formula $\phi[x_1 \mapsto c_1, \ldots, x_m \mapsto c_n, y_1 \mapsto v_1, \ldots, y_n \mapsto v_n]$ is in a decidable fragment. Several decidable and undecidable fragments of first-order logic are covered by Börger et al. [1997].

—The theory of a single relation such as an equivalence or an ordering relation can be easily given by adding axioms for properties such as reflexivity, transitivity, symmetry or anti-symmetry as axioms, as well as those for linearity, and dense or discrete orders. These theories are all decidable [Rabin 1978].

—Algebraic theories such as those for semigroups, groups, rings, fields, and Boolean algebras (BA) can be axiomatized through the basic algebraic laws. The theory of algebraically closed fields (ACF) is a field where every univariate polynomial of nonzero degree has a root. The theory of real closed fields (RCF) is an ordered field where each...
non-negative element has a square root, and each odd degree polynomial has a root. The theory of torsion-free groups where \(\forall x. nx = 0 \Rightarrow x = 0 \) for any natural number \(n \), is an example that is not finite axiomatizable, but is recursively axiomatizable. The first-order theories of BA, ACF and RCF are decidable, whereas that of groups is undecidable. Even the uniform word problem for semigroups, groups, and rings is undecidable, whereas the UWP for commutative semigroups, commutative groups, and fields is decidable.

Various fragments of arithmetic are common examples of first-order theories [Bockmayr and Weispfenning 2001]. The theory of linear arithmetic over the signature \(\langle 0, 1, \#, \rangle \), also known as Presburger arithmetic, is decidable by means of quantifier elimination in triple-exponential time [Cooper 1972; Fischer and Rabin 1974]. The clausal validity problem for linear arithmetic equality and inequality constraints over integers is NP-complete, whereas it can be solved in polynomial time over the reals and rationals. However, the theory of natural numbers, integers, and rational numbers with multiplication (described below) is both incomplete and undecidable.

Even the fragment that is restricted to solving polynomial equalities is undecidable, thus yields a negative answer to Hilbert’s tenth problem [Matiyasevich 1993]. However, the first-order theory of addition and multiplication over the real numbers is decidable by means of quantifier elimination in doubly exponential time [Basu et al. 2003].

Useful theories for various datatypes can often be captured by equational axioms. For example, a simple theory of lists is given by the axioms:

1. \(\text{car} (\text{cons}(x, y)) = x \)
2. \(\text{cdr} (\text{cons}(x, y)) = y \)

Other theories need to make use of the logical connectives, as with the theory of non-extensional arrays below.

1. \(\text{select} (\text{update}(a, i, v), i) = v \)
2. \(i \neq j \Rightarrow \text{select} (\text{update}(a, i, v), j) = \text{select}(a, j) \)

The list and array theories above are missing extensionality axioms that can be used to show that two lists or two arrays are equal if they share the same elements. For lists, the extensionality axiom can be written as \(\text{cons}(x, y) = \text{cons}(u, v) \Rightarrow (x = u \land y = v) \). However, for arrays, we need to use quantification to assert that \((\forall i. \text{select}(a, i) = \text{select}(b, i)) \Rightarrow a = b\). The boundary between decidability and undecidability for the theory of arrays is explored by Bradley et al. [2006]. The clausal validity problem for the extensional theory of arrays is NP-complete [Downey and Sethi 1978; Stump et al. 2001].

An axiomatization of arithmetic was first formulated by Dedekind and Peano but their presentation makes use of quantification over sets. The first-order theory of arithmetic in the signature \(\langle 0, 1, +, \times \rangle \) shown in Figure 7 employs the unary successor operation \(S \) and the binary operations \(+ \) and \(\times \), and a binary ordering predicate \(\leq \). Without the induction axiom scheme, the system is called Robinson arithmetic and is sufficient for demonstrating the incompleteness of arithmetic [Tarski et al. 1971].

An alternate way to define the standard first-order theory of arithmetic would be as the set of sentences that are valid in the standard arithmetic interpretation of \(0, 1, +, \) and \(\times \) over the natural numbers. In this interpretation, the theory contains every sentence or its negation. However, the theory obtained from the axiomatization in Figure 7 does not coincide with the standard theory. This axiomatization of arithmetic is incomplete as demonstrated by Gödel [1967]: either the axioms are inconsistent or there are undecidable sentences that are neither provable nor disprovable. Indeed, the problem persists for any recursive first-order axiomatization of arithmetic, or even a recursively
Fig. 7. Axioms for a first-order theory of arithmetic.

enumerate one, that is, where the axioms can be listed by a program even if they cannot be recognized by one. The set of sentences in the standard theory, assuming consistency, is not recursively enumerable. Gödel’s second incompleteness theorem demonstrates that the consistency of the theory of arithmetic, the arithmetical statement that $0 = 1$ is unprovable, is itself an undecidable sentence. The second incompleteness theorem effectively defeats Hilbert’s programme of establishing the consistency of formalized mathematics by finitistic methods. This was the second of his twenty-three problems presented at the International Congress of Mathematics in 1900 [Hilbert 1902].

Primitive Recursive Arithmetic (PRA) was introduced by Skolem [1967] and Goodstein [1964] to provide a finitist foundation for mathematics. In addition to the basic constant, successor, and projection operations, the theory allows new functions to be defined in terms of old ones by the schemas of composition and primitive recursion. A definition by composition has the form

$$f(x_1, \ldots, x_n) = g(h_1(x_1, \ldots, x_n), \ldots, h_m(x_1, \ldots, x_n)),$$

where the new function f is defined in terms of existing functions g, h_1, \ldots, h_m. A definition by primitive recursion has the form

$$f(0, x_1, \ldots, x_n) = b(x_1, \ldots, x_n)$$

$$f(S(x), x_1, \ldots, x_n) = h(f(x, x_1, \ldots, x_n), x, x_1, \ldots, x_n)$$

Goodstein’s rule of Recursion-Induction [Goodstein 1964] asserts that two expressions that satisfy the same primitive recursion scheme are equivalent. This rule was independently proposed by McCarthy [1963] in the context of his theory of pure Lisp. McCarthy’s formalization of Lisp is also the foundation for the Boyer–Moore family of interactive theorem provers [Boyer and Moore 1979, 1988; Kaufmann et al. 2000].

Set Theory. Many concepts in mathematics such as structures, orders, and maps can be encoded using sets. The original conception of a set as a collection of all elements satisfying a property was found to be unsound. For example, Russell’s paradox introduces the set of elements R consisting of all elements that do not belong to themselves, so that $R \in R \iff R \notin R$. Similarly, the Burali-Forti paradox constructs the set Ω of all ordinal numbers so that Ω is both an ordinal number and is larger than all the ordinal numbers. These paradoxes drove the first-order formalization of set theory by Zermelo, Fraenkel, and Skolem. In ZF set theory, there is one basic predicate \in denoting set
membership. Sets are constructed by means of pairing, union, infinity, power set, comprehension, and replacement. Comprehension is restricted to defining as a set, a subset \(\{ x \in A | \phi(x) \} \) of a given set \(A \) satisfying a stated property \(\phi(x) \). The replacement axiom defines as a set, the image of a set with respect to a map specified by a formula. The axiom of regularity or foundation asserts that each set \(x \) contains an element \(y \) that has no elements in common with \(x \). The axiom of extensionality asserts that two sets are equal if all their elements are in common, so that sets are completely characterized by their members.

Set theory is used in various systems for specification and verification such as Z [Abrial 1980; Spivey 1993], B [Abrial 1996], Z/Eves [Saaltink 1997], and Isabelle/ZF [Paulson 2003]. First-order logic theorem provers have been successful in formalizing proofs in set theory [Boyer et al. 1986; Quaife 1992; Belinfante 1999] by exploiting the finitely axiomatizable set theory due to von Neumann, Bernays, and Gödel [Mendelson 1964]. Good introductions to set theory include Skolem [1962], Halmos [1960], Suppes [1972], and Kunen [1980].

Higher-Order Logic. In first-order logic, the variables range over individuals whereas the function and predicate symbols are treated as constants. A first-order formula such as \((\forall x. p(x, f(x))) \Rightarrow (\forall x. \exists y. p(x, y)) \) is valid if it is true in all interpretations of the function and predicate symbols. Higher-order logic allows quantification over function and predicate symbols. Second-order logic admits quantification over first-order function and predicate symbols: for example, second-order logic can assert \(\exists f. \forall x. p(x, f(x)) \Rightarrow \forall x. \exists y. p(x, y) \). Second-order logic can be used to define the concept of injective and surjective functions, formalize finiteness, define inductive predicates like transitive closure and reachability, and formalize recursive datatypes like the natural numbers, lists, and trees. Third-order logic admits quantification over functions that take first-order functions as arguments, and predicates that take first-order functions and predicates as arguments. Higher-order logic includes \(n \)-th order logic for any natural number \(n \geq 1 \).

Historically, typed higher-order logic was used to counter the inconsistency in Frege’s Grundgesetze [Frege 1903] system of logic which admits a form of unrestricted comprehension as a way of defining sets. With this, it is easy to derive Russell’s paradox. Zermelo [1908] avoided the contradiction by restricting the range of comprehension to an existing set, as in \(\{ x \in y \mid \phi \} \). Russell [1903, 1908] developed a hierarchical type system with individuals, propositions, predicates over individuals, and predicates of predicates, and so on.

Church’s simple theory of types [Church 1940] starts with two basic types of individuals \(i \) and propositions \(o \) at level 0 and builds a hierarchy of functions such that if \(S \) is a type at level \(n \) and \(T \) is a type at level \(n + 1 \), then \(S \rightarrow T \) is a type at level \(n + 1 \).

\[
T := i \mid o \mid T_1 \rightarrow T_2.
\]

The type hierarchy rules out the self-membership or self-application needed to define the Russell set. The terms of higher-order logic are defined from the basic constants of the type \(i \) and \(o \) using lambda-abstraction \(\lambda(x : S).a \) and application \(a \ b \).

\[
s := x \mid \lambda(x : T).s \mid s_1 \ s_2.
\]

Terms are typed relative to a context \(\Xi \) of the form \(x_1 : T_1, \ldots, x_n : T_n \), where \(x_j \neq x_k \) for \(j \neq k \) and each \(T_i \) is a type. Typing judgments have the form \(\Xi \vdash s : T \) for context \(\Xi \), term \(s \), and type \(T \). The typing rules allow \(\Xi \vdash \lambda(x : S).a : S \rightarrow T \) to be derived from \(\Xi, x : S \vdash a : T \), and \(\Xi \vdash (s \ t) : T \) to be derived from \(\Xi \vdash s : S \rightarrow T \) and \(\Xi \vdash t : S \).
These typing rules are the same as the proof rules for natural deduction given by the Curry–Howard isomorphism in Figure 14 (page 38).

There are many different ways to axiomatize higher-order logic depending on which primitives are assumed. Andrews [1986, 1940] presents a system Q_0 with equality as primitive so that we have $\leftrightarrow: o \rightarrow (o \rightarrow o)$ and $=: S \rightarrow (S \rightarrow o)$ for each type S. With this, we can define the truth value \top as $= (\leftrightarrow \top \top)$. We revert to the infix notation for familiar symbols so that we write \top as $\top \leftrightarrow \top$. We can then define the everywhere-true function over some type T as $\lambda(x : T). \top$. We let \bot abbreviate $\lambda(x : o). x = \lambda(x : o). \bot$, and universal quantification $\forall p$ for a predicate p of type $T \rightarrow o$ abbreviates $p = \lambda(x : T). \bot$. A further abuse of notation abbreviates $\forall \lambda(x : T). a$ as $\forall(x : T). a$. The negation operator \neg can be defined as $\lambda(x : o). (x = \bot)$. The conjunction operator \wedge can be defined as $\lambda(x : o). \lambda(y : o). (\forall p : o \rightarrow (o \rightarrow o), p(x)(y) = p(\top)(\top))$. From these primitives, it is easy to define implication and existential quantification.

A term context is a λ-term with a single occurrence of a hole $\{\}$ in it.

$$s^0 := \{\} \mid \lambda(x : T). s^0 \mid s s^0.$$

We write $a\{\}$ to represent a term context so that $a\{b\}$ is the term that results from filling the hole in $a\{\}$ with b. Note that free occurrences of variables in b can become bound in $a\{b\}$.

The system Q_0 is a Hilbert-style system with one rule of inference

$$\frac{c[a]}{c[b]} \quad a = b.$$

It has four axioms:

1. $\vdash (g \top \wedge g \bot) = \forall(x : o). g x$, for $g : o \rightarrow o$
2. $\vdash x = y \Rightarrow (g x \leftrightarrow g y)$, for $g : T \rightarrow o$ and $x : T, y : T$
3. $(f = g) \leftrightarrow \forall(x : S). f x = g x$, for $f : S \rightarrow T, g : S \rightarrow T$
4. $(\lambda(x : S). a) b = a[x \mapsto b]$, where no free occurrences of variables in b appear bound in $a[x \mapsto b]$.

The first axiom asserts that \top and \bot are the sole elements of o. The second axiom is the usual congruence rule for equality. The equivalence asserted in the third axiom can be read as a congruence rule in one direction, and an extensionality principle in the other. The last axiom introduces the equality between a redex term $(\lambda(x : S). s t)$ and its β-reduct $s[x \mapsto t]$. Two λ-terms are α-equivalent if one term can be obtained from the other one by uniformly renaming bound variables. Thus, $(\lambda(x : S). x y)$ is α-equivalent to $(\lambda(z : S). z y)$. Such α-equivalent terms are treated as being syntactically interchangeable in the proof system.

Additionally, higher-order logic also has axioms asserting the existence of an infinite set and a choice operator $\text{choose}(P)$ such that $\exists x. P(x) \Rightarrow P(\text{choose}(P))$. These axioms correspond to the axioms of infinity and choice in set theory. Lambda-abstraction is similar to the comprehension principle for defining new sets.

Since higher-order logic can express finiteness, it does not satisfy compactness. The induction axiom scheme can be expressed as a single axiom, which makes it possible to define the natural numbers and other recursive datatypes directly in second-order logic. The μ-calculus [Park 1976] which extends first-order logic with least and greatest fixed points is also definable in higher-order logic. Many verification systems are based on higher-order logic since it is both simple and expressive [Gordon 1985].
In the above standard interpretation, even second-order logic is incomplete by Gödel’s incompleteness theorem. However, higher-order logic is complete for Henkin models where the function type $T_1 \rightarrow T_2$ is interpreted as any set of maps from $M[T_1]$ to $M[T_2]$ that includes as elements interpretations $M[\lambda(x : T_1).s]$ for any lambda-abstraction $\lambda(x : T_1).s$ of type $T_1 \rightarrow T_2$ [Henkin 1950, 1996].

Monadic second-order logic where the higher-order variables are restricted to monadic predicates is decidable. Automata-theoretic techniques can be used to show that monadic second-order logic remains decidable even with finitely many unary injective (successor) operations over the base type (SnS). The weak version, WSnS, where the monadic predicates are restricted to ranging over finite sets, is also decidable [Rabin 1978; Elgaard et al. 1998]. There are several excellent expositions of higher-order logic including Feferman [1978], Leivant [1994], and van Bentham and Doets [1983].

3. SATISFIABILITY SOLVERS

Satisfiability is a core technology for many verification tasks. We briefly survey the tools for propositional satisfiability and satisfiability modulo theories and their use in verification.

3.1. Inference Systems

Decision procedures for satisfiability are used to determine if a given formula has a model. If the procedure fails to find a model, it must be because the original formula is unsatisfiable. Inference systems [Shankar and Ruess 2002; Shankar 2005; de Moura et al. 2007] provide a unifying framework for defining such satisfiability procedures.

An inference system is a triple $⟨\Psi, \Lambda, \triangleright⟩$ consisting of a set Ψ of inference states, a mapping Λ from inference states to formulas, and a binary inference relation \triangleright between inference states. For each formula ϕ, there must be at least one state ψ such that $\Lambda(\psi) = \phi$. There is a special unsatisfiable inference state \bot. The inference relation \triangleright must be

1. **Conservative:** If $\psi \triangleright \psi'$, then $\Lambda(\psi)$ and $\Lambda(\psi')$ must be equisatisfiable.
2. **Progressive:** For any subset S of Ψ, there is a state $\psi \in S$ such that there is no $\psi' \in S$ where $\psi \triangleright \psi'$.
3. **Canonizing:** If $\psi \in \Psi$ is irreducible, that is, there is no ψ' such that $\psi \triangleright \psi'$, then either $\psi \equiv \bot$ or $\Lambda(\psi)$ is satisfiable.

We say that a function f is an inference operator when $\psi \triangleright f(\psi)$ if there is a ψ' such that $\psi \triangleright \psi'$, and otherwise, $f(\psi) = \psi$. Given an inference operator f, let $f^*(\psi) = f^i(\psi)$, for the least i such that $f^{i+1}(\psi) = f^i(\psi)$. Since \triangleright is progressive, such an i must exist. We can use the operation f^* as a decision procedure since ψ is unsatisfiable iff $f^*(\psi) = \bot$.

We present an inference system for ordered resolution in propositional logic as an illustration. The problem is to determine the satisfiability of a set K of input clauses. This set K also happens to be the input inference state. We assume that K does not contain any clause that is a tautology, that is, one that contains both a literal and its negation. It is also assumed that duplicate literals within a clause are merged. We are also given an ordering $p > q$ on atoms, which can be lifted to literals as $\neg p > p > q > \neg q$. Clauses are maintained in decreasing order with respect to this ordering. In binary resolution, a clause κ containing k and a clause κ' containing k', the complement of k, are resolved to yield $(\kappa \setminus \langle k \rangle) \cup (\kappa' \setminus \langle k' \rangle)$, but in ordered resolution, only the maximal literals in a clause can be resolved. The inference system for ordered resolution is shown in Figure 8. The resolution rule Res adds the clause $\kappa_1 \lor \kappa_2$ obtained by resolving the...
clauses $k \lor k_1$ and $\overline{k} \lor k_2$ to K, provided $k_1 \lor k_2$ is not a tautology and is not already in K, and k and \overline{k} are the maximal literals in $k \lor k_1$ and $\overline{k} \lor k_2$, respectively.

The resolution inference system can be applied to the example $\neg p \lor \neg q \lor r$, $\neg p \lor q$, $p \lor r$, $\neg r$ to achieve a refutation as shown below.

$$
\begin{align*}
(K_0) &= \neg p \lor \neg q \lor r, \quad \neg p \lor q, \quad p \lor r, \quad \neg r \\
(R) &= K_0 \\
\end{align*}
$$

Fig. 8. Inference system for ordered resolution.

3.2. The DPLL procedure for Propositional Satisfiability

Given a propositional formula ϕ, checking whether there is an M such that $M \models \phi$ is a basic problem that has many applications. For simplicity, the formula is first transformed into CNF so that we are checking the satisfiability of a set of clauses K. One easy solution is to enumerate and check all possible assignments of truth values to the propositional atoms in K. We can systematically scan the space of assignments while backtracking to try a different assignment each time a branch of the search tree is found to contain no feasible assignments. This approach has two sources of redundancy. Truth assignments to some variables are implied by those of other variables. For example, if p is assigned \bot and there is a clause $p \lor q$ in K, then clearly q must be assigned \top and there is no need to pursue the branch where q is assigned \bot. A partial
assignment triggers a conflict when, for example, there is a clause \(p \lor \neg q \) where \(p \) is assigned \(\bot \) and \(q \) is assigned \(\top \). Typically, only a small subset of the partial assignment is needed to trigger such a conflict. Even when the other assignments are varied during the search, the same conflict is going to be triggered. The Davis–Putnam–Logemann–Loveland procedure [Davis and Putnam 1960; Davis et al. 1962] introduced the basic idea of searching for a satisfiable assignment by branching on the truth assignment to a variable, propagating any implied truth values, and backtracking from failed assignments. Building on the ideas in SATO [Zhang 1997] and GRASP [Marques-Silva and Sakallah 1999], modern satisfiability solvers such as Chaff [Moskewicz et al. 2001], zChaff [Zhang and Malik 2002], BerkMin [Goldberg and Novikov 2007], MiniSat [Eén and Sörensson 2003], Siege [Ryan 2004], and PicoSAT [Biere 2008] add very efficient Boolean constraint propagation and Sörensson 2003], Siege [Ryan 2004], and PicoSAT [Biere 2008] add very efficient backjumping to handle the first redundancy, and conflict-directed backjumping to eliminate the second source of redundancy. Satisfiability solvers are surveyed by Gomes et al. [2008] and in the Handbook of Satisfiability [Biere et al. 2009].

The DPLL inference system looks for a satisfying assignment for a set of \(n \) clauses \(K \) over \(m \) propositional variables [Zhang and Malik 2003; Nieuwenhuis et al. 2006; de Moura et al. 2007]. It does this by building a partial assignment \(M \) in levels \(l \) and a set of implied conflict clauses \(C \). A partial assignment \(M \) up to level \(l \) has the form \(M_0; M_1; \ldots; M_l \). The partial assignment \(M_0 \) is a set of pairs \(k_i[y_i] \) with literal \(k_i \) and source clause \(y_i \in K \cup C \). For \(0 < i \leq l \), each \(M_i \) has the form \(d_i : k_i[y_i], \ldots, k_n[y_n] \) with decision literal \(d_i \) and implied literals \(k_i \), and their corresponding source clause \(y_i \). When \(k \) occurs as an implied literal in \(M \), let \(M_{Mk} \) be the prefix of the partial assignment preceding the occurrence of \(k \) in \(M \). We maintain the invariant that the source clause for an implied literal \(k \) in \(M \) can be written as \(k \lor y \) where \(M_{Mk} \models \neg y \). We can view \(M \) as a partial assignment since \(M(p) = \top \) if \(p \) occurs in \(M \), \(M(p) = \bot \) if \(\neg p \) occurs in \(M \), and \(M(p) \) is undefined, otherwise.

The inference state set \(\Psi \) consists of all 4-tuples of the form \(\langle l, M, K, C \rangle \) containing the decision level \(l \), the partial assignment \(M \), the input clause set \(K \) that remains fixed, and the conflict clause set \(C \). The operation \(\land \langle l, M, K, C \rangle \rangle \) returns \(\langle M_0 \cup K \cup C \rangle \). The DPLL inference system consists of four basic components:

1. **Propagation** is used to add all the implied literals \(k \) to the partial assignment \(M \) at the current decision level \(l \). A literal \(k \) is implied if there is a clause \(k \lor y \) in \(K \cup C \) where \(M \models \neg y \). Propagation can also detect an inconsistency when there is a clause \(y \) in \(K \cup C \) where \(M \models \neg y \). If this inconsistency is detected at decision level 0, then this reflects a contradiction in \(K \) since the clauses in \(C \) are implied by those in \(K \).

2. **Analysis** is applied when propagation detects an inconsistency that is not at level 0 and it constructs a conflict clause \(y \) such that \(M \models \neg y \) and \(y \) contains exactly one literal at the current level \(l \). When propagation detects an inconsistency, there is a clause \(y \) in \(K \cup C \) such that \(M \models \neg y \). This clause can contain one or more literals that are falsified by \(M \) at the current level \(l \). If we have just one such literal, then \(y \) can be taken as a conflict clause. If we have more than one such literal, then one of these must be maximal in terms of the position of its assignment in \(M \). We replace \(y \) by the result of resolving \(y \) with the source clause \(k \lor y \) for this maximal literal \(k \). Since \(M_{Mk} \models \neg y \), we know that this resolution step only replaces \(k \) with literals whose negations precede \(k \) in \(M \), so that the new clause \(y \) is still falsified by \(M \) and has a smaller maximal literal. Since there are only a bounded number of literals at level \(l \), we will eventually terminate with a conflict clause that has exactly one literal at level \(l \).

3. **Backjumping** is used to reset the partial assignment based on the conflict clause \(y \) constructed by analysis. We know that \(y \) is of the form \(k \lor y' \), where \(k \) is falsified at
Here, but its proof computed during analysis can be spliced into this proof.

Fig. 9. The DPLL procedure with input \(\{p \lor q, \neg p \lor q, p \lor \neg q, s \lor \neg p \lor q, \neg s \lor p \lor \neg q, \neg p \lor r, \neg q \lor \neg r\} \).

level \(l \) and \(\gamma \)' is falsified at some level \(l' < l \). Let \(M^{l'} \) represent the restriction of \(M \) to the assignments in levels at or below \(l' \). The backjumping step replaces \(M \) with the partial assignment \(M^{l'}, \emptyset[\gamma] \) while adding \(\gamma \) to the conflict clause set \(C \).

(4) Selection is employed to pick an unassigned literal \(k \) as the decision literal for continuing the search at the next level when propagation has been applied to extract all the implied literals at the current level \(l \) and no conflicts have been detected. The partial assignment \(M \) is then replaced by \(M; k \). Note that when there are no more unassigned literals, the partial assignment \(M \) is a total assignment, and since it yields no conflict, we have \(M \models \gamma \) for each clause \(\gamma \) in \(K \cup C \).

An example of the procedure is shown in Figure 9. The given input clause set \(K \) is \(\{p \lor q, \neg p \lor q, p \lor \neg q, s \lor \neg p \lor q, \neg s \lor p \lor \neg q, \neg p \lor r, \neg q \lor \neg r\} \). Since there are no unit (single literal) clauses, there is no implied literal at level 0. We therefore select an unassigned literal, in this case \(s \) as the decision literal at level 1. Again, there are no implied literals at level 1, and we select an unassigned literal \(r \) as the decision literal at level 2. Now, we can add the implied literals \(\neg q \) from the input clause \(\neg q \lor \neg r \) and \(p \) from the input clause \(p \lor q \). At this point, propagation identifies a conflict where the partial assignment \(M \) falsifies the input clause \(\neg p \lor q \). The conflict is analyzed by replacing \(\neg p \) with \(q \) to get the unit clause \(q \). Since the maximal level of the empty clause is 0, backjumping yields a partial assignment at level 0 while adding the unit clause \(q \) to the conflict clause set \(C \). Propagation then yields the implied literals \(p \) from the input clause \(p \lor \neg q \) and \(r \) from the input clause \(\neg p \lor r \), which leads to the falsification of the input clause \(\neg q \lor \neg r \). Since this conflict occurs at level 0, we report unsatisfiability.

Generating Proofs. The DPLL search procedure can be augmented to generate proofs by annotating the conflict clauses with proofs corresponding to the analysis steps used in generating them [Zhang and Malik 2003]. In the example above, the conflict \(q \) can be annotated with the proof \(\text{resolve}(p, \neg p \lor q, p \lor q) \) to indicate that the clause is generated by resolving \(\neg p \lor q \) and \(p \lor q \) on the atom \(p \). The final conflict clause \(\neg q \lor \neg r \) can also be analyzed to construct the proof shown below. The conflict clause \(q \) is used as an input here, but its proof computed during analysis can be spliced into this proof.

\[
\begin{align*}
\neg q \lor \neg r & \quad \neg p \lor r \\
\neg q & \quad \neg p \\
\hline
p \lor q & \\
\hline
\neg q & \\
\hline
q &
\end{align*}
\]
Generating Interpolants. The Craig Interpolation Lemma [Craig 1957] states that if we have two sets of first-order logic formulas \(\Gamma \) and \(\Delta \) such that \(\Gamma \cup \Delta \) is inconsistent, then there is a formula \(\phi \) in the intersection of the function and predicate symbols from \(\Gamma \) and \(\Delta \) such that \(\Gamma \) entails \(\phi \) and \(\Delta \) entails \(\neg \phi \). For sets of propositional formulas \(\Gamma \) and \(\Delta \), the interpolant \(\phi \) is a propositional formula whose atoms appear in both \(\Gamma \) and \(\Delta \). Interpolants are useful for finding interesting program assertions including loop invariants [McMillan 2003]. For example, we already saw with bounded model checking that when the assertion

\[
I(x_0) \land \bigwedge_{i=0}^{k-1} N(x_i, x_{i+1}) \land \left(\bigvee_{j=0}^{k} \neg P(x_j) \right)
\]

is unsatisfiable, we do not have any violations of property \(P \) in the first \(k \) steps of the computation. An interpolant can be constructed from this proof of unsatisfiability where \(\Gamma \) consists of \(I(x_0) \land N(x_0, x_1) \land (\neg P(x_0) \lor \neg P(x_1)) \) and \(\Delta \) consists of \(\bigwedge_{i=1}^{k-1} N(x_i, x_{i+1}) \land (\lor_{j=2}^{k} \neg P(x_j)) \). Now \(\Gamma \) and \(\Delta \) only overlap on \(x_1 \) so that their interpolant yields an assertion on \(x_1 \) that conservatively over-approximates the image of the initial state with respect to the transition relation. The interpolant can be used as the initial state in the next iteration of bounded model checking. We examine the construction of an interpolant from a refutational proof based on resolution.

Let the input clause set \(K \) be partitioned into \(K_1 \) with atoms \(\text{atoms}(K_1) \) and \(K_2 \) with atoms \(\text{atoms}(K_2) \). We show that if \(K \) is unsatisfiable, there is a formula (an interpolant) \(I \) such that \(K_1 \models I \) and \(K_2 \land I \vdash \bot \). Furthermore, \(\text{atoms}(I) \subseteq \text{atoms}(K_1) \cap \text{atoms}(K_2) \).

An interpolant \(I_{\Gamma} \) can be constructed for each clause \(\Gamma \) in the proof. The interpolant for the proof is then just \(I_1 \). Each clause \(\Gamma \) in the proof is partitioned into \(\Gamma_1 \lor \Gamma_2 \) with \(\text{atoms}(\Gamma_2) \subseteq \text{atoms}(K_2) \) and \(\text{atoms}(\Gamma_1) \cap \text{atoms}(K_2) = \emptyset \).

The interpolant \(I_{\Gamma} \) has the property that \(K_1 \models \neg \Gamma_1 \Rightarrow I_{\Gamma} \) and \(K_2 \models I_{\Gamma} \Rightarrow \Gamma_2 \), where \(\neg \Gamma_1 \) is the set of negations of literals in \(\Gamma_1 \).

For input clauses \(\Gamma = \Gamma_1 \lor \Gamma_2 \) in \(K_1 \), the interpolant \(I_{\Gamma} = \Gamma_2 \). For input clauses \(\Gamma_2 \) in \(K_2 \), the interpolant is \(\top \). When resolving \(\Gamma' \), \(\Gamma'' \) to get \(\Gamma \),

1. If resolvent \(p \) is in \(\Gamma'_1 \) (i.e., \(p \notin \text{atoms}(K_2) \)), then \(I_{\Gamma} = I_{\Gamma'} \lor I_{\Gamma''} \) since \(\neg(p \lor \Gamma'_1) \Rightarrow I_{\Gamma'} \Rightarrow \Gamma'_2 \) and \(\neg(p \lor \Gamma'_1) \Rightarrow I_{\Gamma''} \Rightarrow \Gamma''_2 \).

2. If resolvent \(p \) is in \(\Gamma''_1 \), then \(I_{\Gamma} = I_{\Gamma'} \land I_{\Gamma''} \) since \(\neg(\Gamma'_1 \lor \Gamma''_1) \Rightarrow I_{\Gamma'} \Rightarrow (p \lor \Gamma'_2) \land (\neg p \lor \Gamma''_2) \Rightarrow \Gamma'_2 \lor \Gamma''_2 \).

Let \(\kappa[\phi] \) represent a clause \(\kappa \) with its interpolant \(\phi \). The interpolant for input sets \(K_1 = \{a \lor e[e], \neg a \lor b[b], \neg a \lor c[c] \} \) and \(K_2 = \{\neg b \lor \neg c \lor d[\top], \neg d[\top], \neg e[\top] \} \), with shared atoms \(b, c, \) and \(e \) can be derived by the following resolution steps.

<table>
<thead>
<tr>
<th>derive</th>
<th>from</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a \lor e[e];e[\top]</td>
</tr>
<tr>
<td>b[e \lor b]</td>
<td>a[e];\neg a \lor b[b]</td>
</tr>
<tr>
<td>c[e \lor c]</td>
<td>a[e];\neg a \lor c[c]</td>
</tr>
<tr>
<td>\neg c \lor d[e \lor b]</td>
<td>b[e \lor b];\neg b \lor \neg c \lor d[\top]</td>
</tr>
<tr>
<td>d[(e \lor b) \land (e \lor c)]</td>
<td>\neg c \lor d[e \lor b];c[e \lor c]</td>
</tr>
<tr>
<td>\bot[(e \lor b) \land (e \lor c)]</td>
<td>d[(e \lor b) \land (e \lor c)];\neg d[\top]</td>
</tr>
</tbody>
</table>

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.
3.3. Satisfiability Modulo Theories

A formula is satisfiable in first-order logic if it has a model. As we already saw in Section 2.2, a theory \(T \) can be defined by a specific class of models so that a sentence is \(T \)-satisfiable if it has a model \(M \) in \(T \), or it could be defined by its presentation as (a class of models for) a collection of axioms. Theory-based decision procedures have been developed since the late 1970s [Nelson 1981; Shostak et al. 1982], but it is only recently that the techniques used by the DPLL search procedure have been adapted for this purpose. In SMT, unlike SAT, the atoms are not just Boolean variables but can also represent equalities and applications of various predicates. For example, the set of formulas

\[
y = z, \ x = y \land x = z, \ x \neq y \land x \neq z
\]

is unsatisfiable due to the interpretation of equality but its propositional skeleton \(p \lor q \lor r, \neg q \lor \neg r \) is satisfiable with the assignment \(\{ p \mapsto \top, q \mapsto \top, r \mapsto \bot \} \), where \(p, q, \) and \(r \) represent \(y = z, x = y, \) and \(x = z \) respectively. Theory satisfiability can be reduced to SAT by generating lemmas that capture the theory constraints. In the above example, we can add the lemmas \(\neg p \lor \neg q \lor r, \neg p \lor \neg r \lor q, \) and \(\neg q \lor \neg r \lor p \). The problem with this eager reduction to SAT is that there are \(3^n \) candidate lemmas in \(n \) atoms and it is prohibitively expensive to test each of them for theory validity. The lazy approach uses SAT to generate a candidate assignment like the one above, which is then refuted by a theory solver.

SMT solvers can deal with other theories including equality over uninterpreted functions, linear arithmetic, bit-vectors, and arrays, as well as combinations of these theories. SMT solvers have been extended to handle quantified formulas through the use of a technique called E-graph matching [Nelson 1981]. SMT solvers have a large number of applications since many planning and programming problems can be directly represented as SMT problems. For example, SMT can be used to check the feasibility of a symbolic program path and to generate an actual test case that exercises that path. It can be used to capture quantitative constraints in a planning problem. SMT solvers can be embedded within interactive proof checkers as well as assertion checkers and refinement tools. We only provide a very brief survey of the basic ideas in SMT solving [Nieuwenhuis et al. 2006; Bradley and Manna 2007; de Moura et al. 2007; Kröning and Strichman 2008; Barrett et al. 2009].

We first describe the theory satisfiability procedure TDPLL. Recall that the state of the DPLL procedure is of the form \(\langle d, M, K, C \rangle \) with decision level \(d \), partial assignment \(M \), input clause set \(K \), and conflict clause set \(C \). For satisfiability modulo theories, we add a fifth element \(S \) which is the theory state. The interaction between the DPLL search and the theory solver is surprisingly simple even if the details of any given implementation can be quite complicated. The interface for the theory solver consists of the \texttt{Assert, Ask, Check, and Retract} operations. Whenever a literal is added to \(M \) either by selection or propagation, then it is also added to \(S \) through the \texttt{Assert} operation. We can use \texttt{Ask} to check if a particular literal is implied by \(S \), in which case it is added to the partial assignment \(M \). Also, in this case, the theory solver may have the option of generating a theory lemma corresponding to this implication which can be added to \(C \).

The \texttt{Check} operation determines if the state \(S \) is inconsistent, in which case the theory solver returns a conflict lemma clause of the form \(k_1 \lor \cdots \lor k_n \), where each \(k_i \) is the negation of a literal in the explanation for the conflict, namely, the set of input literals asserted to \(S \) that are relevant to the conflict. In the latter case corresponding to a theory conflict, the lemma clause is added to \(C \) and the DPLL procedure also signals a conflict. The conflict is treated as a global conflict if it occurs at level 0, or it triggers backjumping as in the DPLL satisfiability procedure. When literals are dropped from
Check out the satisfiability of \(y = z, \ x = y \lor x = z, \ x \neq y \lor x \neq z \).

An example of the TDPLL search procedure is shown in Figure 10. Here, we consider the previous example of the input clause set \(y = z, \ x = y \lor x = z, \ x \neq y \lor x \neq z \). The theory state \(S \) here consists of a union-find structure \(F \) which maintains the equality information and a set \(D \) of the input disequalities. Initially, the partial assignment \(M \) and the theory state \((F, D) \) are both empty. By DPLL propagation, we add the unit clause \(y = z \) to the partial assignment at level 0 and assert it to the theory state. Next, at level 0, we select the literal \(x \neq y \) and add it to \(M \) and insert it into \(D \). The scan step checks all the input literals to collect the ones that are implied or refuted by the theory state. In this case, the literal \(x \neq z \) is implied by the theory solver with the supporting lemma \(x \neq z \lor y \neq z \lor x = y \). This new literal is added to the partial assignment and the supporting lemma is added to \(C \). Now, DPLL propagation generates a conflict with the clause \(x = y \lor x = z \). Analyzing this conflict yields the conflict clause \(y \neq z \lor x = y \) which is added to \(C \). Backjumping with this conflict clause adds the literal \(x = y \) at level 0 while retracting the previously asserted literal \(x \neq z \). DPLL propagation applied to the input clause \(x \neq y \lor x \neq z \) causes \(x \neq z \) to be added to \(M \) and \(D \). Now, we have a complete assignment and the theory state \((F, D) \) is clearly inconsistent.

There are many variations on the basic algorithm described above. For example, the eager approach adds theory lemmas to \(C \) prior to the search. The procedure for checking the theory state for inconsistency can be applied at any point during the search or restricted to total assignments. Indeed the checking process can be eliminated in favor of a strong form of \textit{Assert} that detects inconsistencies in the theory state as soon as they are introduced. The theory propagation procedure implemented by querying the theory state for implied literals can be incomplete without affecting the completeness of the search procedure. It can sometimes be more efficient to use a fast but incomplete theory propagation procedure. The operation of scanning the unassigned literals to find an implied literal can either be invoked whenever the theory state is updated or in an intermittent manner. In building an SMT solver, a great deal of experimentation goes into optimizing these parameters to achieve robust performance across the spectrum of benchmarks.

The correctness of the TDPLL inference system is along the same lines as the argument for DPLL. The TDPLL procedure relies on the \textit{Check} procedure being sound and complete, and the \textit{Ask}, \textit{Retract}, and \textit{Assert} procedures being sound. SMT solvers have been around from the late 1970s with the Nelson–Oppen method [Nelson and Oppen 1979; Nelson 1981] used in the Stanford Pascal Verifier and in the Simplify prover [Detlefs et al. 2003] and Shostak’s STP [Shostak 1984; Shostak et al. 1982].
More recent SMT solvers are built around the modern versions of the DPLL procedure. In contrast with the lazy approach used in the earlier systems where theory solving is invoked from within a SAT solver, the UCLID [Bryant et al. 2002] system employs an eager combination where theory solving is used to generate theory lemmas that are added to the original formula for checking propositional satisfiability. The lazy combination of theory solving with modern DPLL solvers first appeared in LPSAT [Weld and Wolfman 1999], the Cooperative Validity Checker (CVC) [Stump et al. 2002; Barrett et al. 2002], ICS [de Moura et al. 2002], MathSAT [Audemard et al. 2002], and Verifun [Flanagan et al. 2003]. More recent implementations include Barcelogic [Bof il 2008], CVC3 [Barrett and Tinelli 2007], MathSAT 4 [Bruttomesso et al. 2008], Yices [Dutertre and de Moura 2006b], and Z3 [de Moura and Bjørner 2008].

3.4. Theory Solvers

We have illustrated the TDPLL procedure with a theory solver for equality and disequality based on the union–find algorithm [Galler and Fisher 1964; Tarjan 1975]. This theory solver can itself be seen as an inference system. In this algorithm, the only quality based on the union–find algorithm [Galler and Fisher 1964; Tarjan 1975]. This quality is implied, we check if there is some disequality \(x \neq y \) in \(D \) such that \(F^*(x) = F^*(y) \). As an option, we require the Ask operation to generate an economical explanation of the implication which can be added as a lemma. Generating such explanations requires a version of union-find where each edge in the find structure corresponds to an input [Nieuwenhuis and Oliveras 2005]. The Check operation applies the Contrad rule to see if there is an invalid disequality in \(D \). As with Ask, generating an explanation for the contradiction requires a proof-carrying version of union-find. Retraction is an easy operation since a disequality can be deleted from \(D \), and for an equality, the corresponding sorted equality can be deleted from \(F \).

Congruence Closure. A theory solver for equality over arbitrary terms can be defined using congruence closure [Cozen 1977; Shostak 1978; Nelson and Oppen 1977; Bachmair et al. 2003; Nieuwenhuis and Oliveras 2005]. In this procedure, the E-graph data...
structure used in the union-find algorithm contains nodes for each subterm in the term universe. For each node corresponding to a term the form \(f(a_1, \ldots, a_n) \), we have a data structure that maintains the signature of the term, namely \(f(F^*(a_1), \ldots, F^*(a_n)) \). The E-graph is maintained in congruence closed form so that whenever two nodes have the same signature, their equivalence classes are merged. Whenever there is a disequality \(s \neq t \) in \(D \) such that \(F^*(s) \equiv F^*(t) \), the theory solver signals an inconsistency. The \texttt{Assert} command is defined to add an equality or disequality to the E-graph and close it under congruence. The \texttt{Ask} command merely checks if an equality \(s = t \) is implied by the E-graph or refuted by some disequality in \(D \) of the form \(s' \neq t' \), where \(F^*(s) \equiv F^*(s') \) and \(F^*(t) \equiv F^*(t') \). Retraction is as in the union-find inference system.

Linear Arithmetic. There is a wide range of theory solvers for constraint solving with various fragments of linear arithmetic equalities and inequalities. One simple fragment deals only with interval constraints on variables. An inference system for such a fragment can be defined to maintain the tightest interval for each variable. If some variable has an empty interval, then we have a contradiction.

Difference constraints have the form \(x - y \leq c \) or \(x - y < c \), for some constant \(c \). Strict inequalities \(x - y < c \) can be replaced by the non-strict form \(x - y \leq c - \epsilon \) by introducing a positive infinitesimal \(\epsilon \). Algorithms for processing such constraints include the Bellman–Ford procedure [Wang et al. 2005; Cotton and Maler 2006] and the Floyd–Warshall procedure [Dutertre and de Moura 2006b]. One important twist in the case of SMT solving is that the algorithms must be incremental so that new constraints can be added on-the-fly, and easily retractable so that constraints can be efficiently deleted from the theory solver state in the reverse order in which they were asserted. For difference constraints over integers, the constant \(c \) in the constraint must be an integer and we can use 1 instead of the infinitesimal \(\epsilon \) to replace \(x - y < c \) by \(x - y \leq c - 1 \). The solution, if it exists, must assign integer values to the variables, so that the same algorithms can be applied to both the real and the integer fragment.

In the more general case, we have linear arithmetic constraints of the form \(A\vec{x} \leq \vec{b} \), where \(A \) is a matrix over the rationals and \(\vec{b} \) is a vector of rational constants. Fourier’s method [Fourier 1826; Dantzig and Curtis 1974; Williams 1976], also known as the Fourier–Motzkin method, can be used to eliminate a variable, say \(x_1 \), from a set of \(m \) inequalities of the form \(a_{i1}x_1 + \cdots + a_{in}x_n \leq b_i \), for \(1 \leq i \leq m \) by transforming each such inequality into \(x_1 \leq (-a_{i2}/a_{i1})x_1 + \cdots + (a_{in}/a_{i1})x_n + b_i \) for \(a_{i1} > 0 \), and \(x_1 \geq (a_{i2}/-a_{i1})x_1 + \cdots + (a_{in}/-a_{i1})x_n + (-b_i) \) for \(a_{i1} < 0 \). Then, for any pair of inequalities of the form \(x_1 \leq U \) and \(x_1 \leq L \), we add the inequality \(L \leq U \) which does not contain \(x_1 \). Once all such inequalities have been added, all the inequalities involving \(x_1 \) can be deleted. The new inequalities can be transformed to the form \(A\vec{x} \leq \vec{b} \) for further variable elimination until we have either a satisfiable or an unsatisfiable set of numeric inequalities. The Omega test [Pugh 1992; Bereziner et al. 2003] extends Fourier’s method to mixed constraints with both integer and real variables.

Each elimination step of Fourier’s method produces up to \((m/2)^2 \) inequalities from \(m \) inequalities so that the method is quite expensive in practice. Inference procedures based on the simplex procedure for linear programming have proved effective for the linear arithmetic fragment [Nelson 1981; Deteufs et al. 2003; Vanderbei 2001; Ruess and Shankar 2004]. These procedures demonstrate the infeasibility of \(A\vec{x} \leq \vec{b} \) by finding a vector \(\vec{y} \geq 0 \) such that \(\vec{y}^T A\vec{x} = 1 \) and \(\vec{y}^T \vec{b} = 0 \), where \(\vec{y}^T \) is the transpose of \(\vec{y} \). Linear arithmetic equalities \(s = t \) can be reduced to the equivalent conjunction \(s - t \leq 0 \land t - s \leq 0 \). The general form simplex has been particularly effective for the full linear arithmetic fragment [Dutertre and de Moura 2006b]. Here, input inequalities of the form \(s \leq c_u \) or \(s \geq c_l \) are converted into tableau entries of the form \(x_u = s \leq c_u \) or \(x_l = s \geq c_l \).
with a freshly chosen variable x_s corresponding to each canonical polynomial s in the input. We thus have a tableau of the form $\mathbf{x} = A\mathbf{y}$, where the variables in \mathbf{x} are the basis variables and the variables in \mathbf{y} are disjoint from those in \mathbf{x} and constitute the non-basis variables. The algorithm then maintains the upper and lower bounds $U(x)$ and $L(x)$ for each variable x in the tableau. Whenever $s \leq c_u$ is added and $c_u < U(x_s)$, we update $U(x_s)$ as c_u, and similarly for $L(x_s)$ with respect to the introduction of $s \geq c_l$ with $L(x_s) < c_l$. The algorithm also maintains an assignment β for the non-basis variables from which the assignment for the basis variables is computed. Whenever a basis variable has a computed assignment that violates its bounds, pivoting is used to exchange basis and non-basis variables so as to find a new assignment β' that does satisfy the bounds. An inconsistency is determined when there is no suitable pivot candidate for a basis variable whose assignment violates its bounds. The main advantage of this general form algorithm is that retraction has very little cost since we can retain the existing assignment to the variables. The explanation for an inconsistency can be easily constructed from the simplex tableau.

For the case of linear arithmetic constraints with both integer and real variables, the above procedure must be supplemented with heuristic methods since complete procedures can be quite expensive. Strict input inequalities $s < c$ that contain all integer variables can be replaced by $s \leq \lceil c - 1 \rceil$ during pre-processing. For a tableau entry of the form $x = a_1x_1 + \cdots + a_nx_n$, where the variables all range over the integers and the coefficients are also integers, we can use the GCD test to check that the interval for x contains a multiple of the greatest common divisor of the coefficients. For example, if we have $x = 3y - 2z$ with $U(x) = 2$ and $L(x) = 1$, we know that the constraints are not feasible. If the coefficients a_i are non-integer rationals, then the tableau entry can be normalized so that we have $bx = a'_1x_1 + \cdots + a'_nx_n$, where $a'_i = a_i/b$ and we can replace bx by x' while noting that x' must be divisible by b. The branch-and-bound method is invoked whenever an integer variable x has a non-integer assignment $\beta(x)$ to check if the constraints are feasible when conjoined with either of $x \leq \lfloor c \rceil$ or $x \geq \lceil c \rceil$.

Nonlinear Arithmetic. The Gröbner basis algorithm [Buchberger 1976] can be used to solve the uniform word problem for algebraically closed fields, that is, fields where every univariate polynomial of non-zero degree has a root. The algorithm solves ideal membership over polynomial rings. Given a set of polynomials Π, the ideal generated by Π is the smallest set I with $\Pi \subseteq I$ and $0 \in I$ that is closed under addition and multiplication with any polynomial. Given a set of polynomials and an ordering on the variables, the monomials can be ordered lexicographically so that, for example, if $x > y > z$, then $x^2yz > x^2y > xy^2z > xyz^2 > xy$. This ordering can be lifted lexicographically to polynomials. One polynomial $aM + P$ can be reduced by another polynomial $bN + Q$ for pure (i.e., with coefficient equal to 1) monomials M and N with $N > Q$, nonzero coefficients a and b, and polynomials P and Q, if $M = M'N$ for some monomial M'. The reduction replaces the polynomial $aM + P$ by $-aM'Q + bP$. Similarly, the superposition of two polynomials $aM + P$ and $bN + Q$ with $M > P$ and $N > Q$ adds the polynomial $aM'Q - bN'P$, where M' and N' are the least polynomials such that $M'N' = NN'$. Superposition must not be applied to a pair of polynomials where one polynomial can be reduced by the other. The set obtained by starting with Π and repeatedly applying reduction and superposition yields a set of mutually irreducible polynomials B which is the Gröbner basis. A polynomial p is a member of the ideal generated by Π if it is reducible to 0 by the polynomials in B.

To show that $\bigwedge_{i=1}^n p_i = 0 \Rightarrow p = 0$ over algebraically closed fields, we start with the set Π of the original set of polynomials augmented with $py - 1$ for some fresh variable y, and apply reduction and superposition to closure while deleting trivial polynomials of the form 0, to obtain the Gröbner basis B of Π. By Hilbert’sWeak Nullstellensatz [Basu
The Gröbner basis algorithm does not apply to ordered fields like the real numbers. The first-order theory of reals, that is, the set of first-order sentences true in the reals, is indistinguishable from the theory of real closed fields, i.e., ordered fields where non-negative elements have square roots and polynomials of odd degree have roots. Tarski [1948] gave a decision procedure for the first-order theory of real-closed fields which has been improved by Cohen [1969] and Hörmander [1983], and by Collins [1975]. Tiwari [2005] has developed a semi-decision procedure for the universal fragment of real closed fields combining the simplex algorithm and Gröbner basis computations. Parrilo [2003] gives an alternative approach. Consider first the problem of showing that a polynomial \(p \) is positive semi-definite (PSD), that is, \(\forall x : p \geq 0 \) holds for \(x = \text{vars}(p) \). If \(p \) can be expressed as a sum of squares (SOS) \(\Sigma_{i=1}^{m} q_i^2 \), then it is clearly positive semi-definite. Such SOS decompositions can be found quite effectively in practice using semidefinite programming (SDP), a convex optimization technique. Although useful, this approach is not complete even for proving a single polynomial is PSD: there are PSD polynomials that are not expressible as a sum of squares of polynomials. However, the approach can be generalized to the clausal validity problem over real closed fields by using similar SDP-based methods to generate Positivstellensatz certificates. Harrison [2007] has incorporated this method into HOL Light by generating proofs for clausal validity based on the certificates.

Arrays. The clausal validity problem for the extensional theory of arrays (see page 17) can be solved by lazily instantiating the axioms [Dutertre and de Moura 2006b]. For example, whenever \(a \neq b \) is asserted, a fresh Skolem constant \(k \) is generated along with the lemma \(\text{select}(a, k) \neq \text{select}(b, k) \lor a = b \). Whenever the array term \(\text{update}(a, i, v) \) appears in the E-graph, we add the lemma \(\text{select}(\text{update}(a, i, v), i) = v \). Additionally, if term \(b \) is in the same equivalence class as \(a \) or \(\text{update}(a, i, v) \), then for any term \(\text{select}(b, j) \) in the E-graph, we add the lemma \(i = j \lor \text{select}(\text{update}(a, i, v), j) = \text{select}(a, j) \).

Bit Vectors. The theory of bit-vectors deals with fixed-width bit-vectors and the bitwise logical operations, various left and right shift operators, as well as signed and unsigned arithmetic operations. If an \(n \)-bit bit-vector \(b \) is \(\langle b_{n-1}, \ldots, b_0 \rangle \), then the unsigned interpretation \(\text{uval}(b) \) is \(2^{n-1}b_{n-1} + \cdots + 2^0b_0 \) and the signed (two’s complement) interpretation is \(\text{val}(b_{n-2}, \ldots, b_0) - b_{n-1}2^{n-1} \). A simple approach to a bit-vector solver is to use \textit{bit-blast} the expression by replacing each bit-vector term \(b \) by \(n \) bits \(\langle b_{n-1}, \ldots, b_0 \rangle \) and translating all the operations into the bit representations. This can be expensive and should be done only as needed. Bit-vector problems that require only equality reasoning can be handled efficiently within the E-graph itself.

Combining Theory Solvers. In applying SMT solvers to problems in verification, one typically finds verification problems that span multiple theories including arrays, arithmetic, uninterpreted function symbols, and bit-vectors. The Nelson–Oppen method [Nelson and Oppen 1979; Nelson 1981; Oppen 1980] is a general approach for combining multiple theory solvers as long as the theories involved are over disjoint signatures. A cube \(\phi \) over a combined signature \(\Sigma_1 \cup \Sigma_2 \), where \(\Sigma_1 \cap \Sigma_2 = \emptyset \), is satisfiable in the union of theories if it has a model \(M \) whose projection to signature \(\Sigma_i \)
is a structure in theory \(i\), for \(i = 1, 2\). The first step is to purify the formula into an equisatisfiable conjunction \(\phi_1 \land \phi_2\), where each \(\phi_i\) is a cube entirely in the signature \(\Sigma_i\). Purification is done in stages by replacing a pure subterm \(s\) of \(\phi\) in theory \(i\) by a fresh variable \(x\) while conjoining \(x = s\) to the formula. Eventually, we have a cube of the form \(\phi' \land \bigwedge_{i=1}^n x_i = s_i\), where each literal in the cube \(\phi'\) is a pure formula in one of the theories and each equality \(x_i = s_i\) is also pure. This conjunction can then be easily partitioned into \(\phi_1 \land \phi_2\).

We could now apply the individual theory solvers to check if each \(\phi_i\) is satisfiable in theory \(i\), but this does not guarantee satisfiability in the union of the theories since the individual models might not be the projections of a single model. To ensure that the models are compatible, we guess an arrangement \(A\) of the shared variables in \(\text{vars}(\phi_1) \cap \text{vars}(\phi_2)\). An arrangement is a conjunction of equalities and disequalities between these variables corresponding to some partition of the variables into equivalence classes so that we have \(x = y\) for any two variables \(x\) and \(y\) in the same equivalence class and \(x \neq y\) for any two variables \(x\) and \(y\) in distinct equivalence classes. We can then check that there is some arrangement \(A\) among the finitely many arrangements, such that \(\phi_i \land A\) is satisfiable in theory \(i\) for \(i = 1, 2\). If there is such an arrangement, then it guarantees that the original formula \(\phi\) is satisfiable in the union of the theories provided the theories in question are stably infinite: if a formula has a model, it has a countably infinite one. Without this proviso, we might still have an incomparability since the finite cardinalities of the two models might not match. The two countable models \(M_1\) and \(M_2\) that agree on an arrangement can be amalgamated into a single model \(M\) for \(\phi_1 \land \phi_2\) by defining a bijection \(h\) between \(M_2\) and \(M_1\) such that \(|M| = |M_1|\), \(M(f) = M_1(f)\) for \(f \in \Sigma_1\), and \(M(g(a_1, \ldots, a_n)) = h(M_2(g(h^{-1}(a_1), \ldots, h^{-1}(a_n))))\) for \(g \in \Sigma_2\), and \(M(x) = M_1(x) = h(M_2(x))\) for each shared variable \(x\). Conversely, if the formula \(\phi_1 \land \phi_2\) is satisfiable, then this model yields an arrangement \(A\) such that each \(\phi_i \land A\) is satisfiable in theory \(i\).

For example, the literal

\[
\text{select(update}(a, 2i + 1, \text{select}(a, 3i - 1)), i + 3) \neq \text{select}(a, i + 3)
\]

can be purified to \(\phi_1\) of the form \(\text{select(update}(a, x, \text{select}(a, y)), z) \neq \text{select}(a, z)\) and \(\phi_2\) of the form \(x = 2i + 1 \land y = 3i - 1 \land z = i + 3\). The shared variables are \(x\), \(y\), and \(z\), and it can be checked that there is no arrangement \(A\) where \(\phi_1 \land A\) is satisfiable in the theory of arrays and \(\phi_2 \land A\) is satisfiable in the theory of integer linear arithmetic.

E-Graph Matching. While there is no complete method for handling first-order quantification, there are some useful heuristic approaches for instantiating quantifiers in order to derive unsatisfiability within the context of an SMT solver. The E-graph matching method [Nelson 1981; Detlefs et al. 2003] developed in the Stanford Pascal Verifier is one such approach. The E-graph contains vertices corresponding to terms. A quantified formula \(\phi\) can be Skolemized so that it is of the form \(\phi_1 \land \cdots \land \phi_n\), where each \(\phi_i\) is of the form \(\forall x_i. \kappa_i\), and \(\kappa_i\) is just a clause.

E-graph matching [Nelson 1981] tries to find a ground instance of the clause \(\kappa_i\) that can be added to the set of clauses in SMT procedure. There are usually infinitely many instances so we need to be selective about adding only those instances that are relevant to the search. However, if we only search for syntactic matches, then many useful instantiations could be overlooked. For example, when matching a rule of the form \(f(g(x)) = g(f(x))\), the E-graph term universe might not contain terms of the form \(f(g(a))\) or \(g(f(a))\), but it might contain terms of the form \(f(a)\), where \(a\) and some other term \(g(b)\) are in the same equivalence class. E-graph matching is able to find such a match so that the instance \(f(g(b)) = g(f(b))\) is added to the set of clauses in

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.
the SMT procedure. E-graph matching can be controlled by identifying triggers, which are sets of terms in the clause covering all the free variables that must be matched before the corresponding instance is added. E-graph matching is an incomplete method for quantifier instantiation compared to those in the next section, but it is effective in conjunction with an SMT solver since instantiation is restricted to terms that are represented in the E-graph.

4. Proof Search in First-Order Logic

The early approaches to proof search [Gilmore 1960; Prawitz 1960] in the late 1950s were based on the Herbrand theorem. It was observed by Prawitz [1960], and also by Herbrand [1930] himself, that the Herbrand instantiation could be constructed by equation solving. This is done by picking a bound k on the Herbrand expansion and k sets $\mathcal{Y}_1, \ldots, \mathcal{Y}_k$ of mutually disjoint variables, and converting the formula $\psi[x \mapsto \mathcal{Y}_1] \land \cdots \land \psi[x \mapsto \mathcal{Y}_k]$ to disjunctive normal form $\Gamma_1 \lor \cdots \lor \Gamma_w$. For the formula to be unsatisfiable, each disjunct Γ_i, $1 \leq i \leq w$ must contain an atom $p(s_1, \ldots, s_w)$ and its negation $\neg p(t_1, \ldots, t_w)$ generating a constraint of the form $p(s_1, \ldots, s_w) = p(t_1, \ldots, t_w)$. The constraints collected from each disjunct must be solved simultaneously over Herbrand terms. Such equations are solved by unification which constructs a single substitution for the equations $s_i = t_1, \ldots, s_w = t_w$ such that $s_i \sigma$ is syntactically identical to $t_j \sigma$ for $1 \leq i \leq w$.

For example, the claim $\forall x \exists y. p(x) \land \neg p(y)$ is unsatisfiable. Here, ψ is just $p(x) \land \neg p(f(x))$, where the Herbrand expansion $p(z) \land \neg p(f(z)) \land p(f(f(z)))$ with $k = 2$ is propositionally unsatisfiable. This expansion could have been obtained by unification from $p(x_1) \land \neg p(f(x_1)) \land p(x_2) \land \neg p(f(x_2))$.

Robinson’s resolution method [Robinson 1965] simplified the application of the Herbrand theorem by

1. Placing ψ in clausal form $\forall \kappa_1 \land \cdots \land \forall \kappa_m$, where the $\forall \kappa_i$ indicates that the free variables in each clause κ_i are universally quantified.

2. Introducing a resolution inference rule that generates the clause $\forall(\kappa \lor \kappa') \theta$ from $k \lor \kappa$ and $\neg k' \lor \kappa'$, where θ is the most general unifier of k and k'. For θ to be a unifier of k and k', the substituted forms $k \theta$ and $k' \theta$ must be syntactically identical. For θ to be the most general unifier of k and k', it must be the case that for any other unifier θ', there is a substitution σ such that $\theta' = \theta \circ \sigma$. In other words, for any substitution $x \mapsto t'$ in θ', either $x \mapsto t$ in θ and $t' = t \sigma$, or there is no substitution for x in θ and $t' = t \sigma$. The clauses $k \lor \kappa$ and $\neg k' \lor \kappa'$ are assumed to have no variables in common. Note that this extends the propositional binary resolution rule to the first-order case by using unification.

3. Adding a factoring rule to derive $(k \lor \kappa) \theta$ from $k \lor k' \lor \kappa$, where θ is the most general unifier of k and k'. Otherwise, if we resolve $P(x) \lor P(x')$ with $\neg P(y) \lor \neg P(y')$, we get $P(x') \lor \neg P(y')$ and we would never be able to construct a refutation.

Resolution inferences are repeated until the empty clause is generated. The above example $p(x) \land \neg p(f(x))$ generates two clauses $p(x)$ and $\neg p(f(y))$ which can be resolved to yield the empty clause. Since validity in first-order logic is undecidable, resolution can only be a semi-decision procedure. When the input clause set is in fact unsatisfiable, the procedure will eventually terminate with the empty clause. However, when the input is satisfiable, the procedure might not terminate. By the Herbrand theorem, we know that if the formula is unsatisfiable, then some Herbrand expansion of the input clause set is propositionally unsatisfiable. The corresponding propositional resolution refutation can be easily simulated by the first-order resolution procedure above as long
as the rules are applied fairly, that is, each applicable instance of the resolution or factoring rule is eventually applied.

The basic resolution system described above has many variants and refinements [Bachmair and Ganzinger 2001]. Subsumption is an incomplete syntactic check for whether one clause is implied by another, in which case the former clause is deleted for efficiency. The unification algorithm can be enhanced to incorporate theory reasoning [Stickel 1985]. Associative-commutative unification [Baader and Snyder 2001] and higher-order unification [Dowek 2001] are two such examples.

The resolution rule can itself also be enriched to handle equality (using demodulation, paramodulation, and superposition) [Nieuwenhuis and Rubio 2001] and inequality [Stickel 1985; Manna et al. 1991]. Most modern proof search systems use superposition [Nieuwenhuis and Rubio 2001], which applies to clauses containing equality and disequality literals. Non-equality literals of the form \(p \) can be rewritten to \(p \equiv x \), that is, each applicable instance of the resolution or factoring rule is eventually applied.

The following derivation shows how a contradiction can be derived from the above clause set by applying the inference rules in Figure 12.

\[
\frac{y = z, \ x = y \lor x = z, \ x \neq y \lor x \neq z}{x = z \lor y \neq z, \ldots \quad \text{Factor}}
\frac{x \neq z \lor y \neq z, \ldots}{z \neq z \lor y \neq z, \ldots \quad \text{Left}}
\frac{y \neq z, \ldots}{z \neq z, \ldots \quad \text{EqRes}}
\]

\[
\frac{\bot}{\text{Contrad}}
\]

The above rules can be extended to the ground case where we have ground terms instead of variables so that \(x, y, \) and \(z \) are actually terms \(r, s, \) and \(t \), and in the Right
rule, \(r = s \lor L \) is resolved with \(t[r] = t' \lor K \) to yield the new clause \(t[s] = t' \lor K \). The other rules are similarly generalized to ground terms from variables. The calculus can also be lifted to the non-ground case by using unification instead of syntactic equality [Nieuwenhuis and Rubio 2001].

Theorem provers based on resolution include Otter [McCune 1990], E [Schulz 2002], Snark [Stickel et al. 2000], SPASS [Weidenbach et al. 2002], Vampire [Riazanov and Voronkov 2002], and Prover9 [McCune 2007]. The annual CASC competition (CADE ATP System Competition) [Sutcliffe and Suttner 2006] evaluates the performance of theorem proving systems in various categories of first-order logic with and without equality.

5. INTERACTIVE PROOF CHECKERS

In the previous sections, we have seen different ways in which proof and model construction can be automated. Even with such automation, proof construction remains a difficult challenge that calls on human insight and guidance, and a great deal of experimentation. A lot of the time and effort in constructing proofs is devoted to debugging incorrect definitions, conjectures, and putative proofs. Regardless of the level of automation provided by a theorem proving tool, interactivity is needed for delving into the details of an attempted proof. Interactive proof checking has its origins in the work of McCarthy [1962] and de Bruijn’s Automath project [de Bruijn 1970, 1980; Nederpelt et al. 1994]. The technology for interactive proof checking was further developed by Bledsoe [Bledsoe and Bruell 1974], Milner [Milner 1972], Weyhrauch [Weyhrauch and Thomas 1974], and Boyer and Moore [1975]. We briefly survey a few of the systems that are actively used in major verification projects including ACL2 [Kaufmann et al. 2000], Coq [Bertot and Casteran 2004], HOL [Gordon and Melham 1993], Isabelle [Paulson 1994], Nuprl [Constable et al. 1986], and PVS [Owre et al. 1995].

5.1. Maude: A Fast Rewrite Engine

Maude [Clavel et al. 1999] and ELAN [Borovanský et al. 2002] are fast and versatile rewrite engines that can be used for building other semantics-based tools. While the rewrite engines are automatic, interaction is used to develop a formal specification consisting of a series of declarations and definitions. Maude is a successor of the OBJ3 system [Goguen et al. 1987] and is based on rewriting logic where different rewriting steps applied to the same term need not be confluent. Maude’s rewriting framework is based on membership equational logic which extends first-order conditional equational logic with subsorts and membership assertions of the form \(t : s \) for term \(t \) and sort \(s \). Each sort is required to be a subsort of a parent kind. The signature, equations \(l = r \), conditional equations \(l \leftarrow r \), if \(b \), and rewrite rules \(l \Rightarrow r \) are given in a module. Maude also allows terms to be treated as equivalent modulo a theory \(E \) with respect to rewriting. Thus, a term \(l' \) will be rewritten by a rewrite rule \(l \Rightarrow r \) if there is a substitution \(\sigma \) such that \(E \vdash \sigma(l) = l' \). This allows the language to capture states as terms and state transitions as rewriting steps.

The Maude rewriter employs term-indexing techniques to achieve high speeds of rewriting. By the use of rewriting logic, Maude can be used to define and explore the computational state and operational semantics of a wide range of models of computation. Maude has several interesting applications in metaprogramming [Clavel et al. 1999], program analysis tools [Meseguer and Rosu 2005], symbolic systems biology [Eker et al. 2003], and the analysis of cryptographic protocols [Escobar et al. 2007].
5.2. ACL2: Recursion and Induction

ACL2 [Kaufmann and Moore 1996; Kaufmann et al. 2000] is the most recent in a line of inductive theorem provers initiated by Boyer and Moore [1979, 1988] in 1973. These provers are built on a computational logic formalizing pure Lisp given by McCarthy [1963]. The ACL2 logic is based on an applicative fragment of the widely used programming language Common Lisp [Steele Jr. 1990]. The theorem prover is itself written in this fragment. It can be used interactively to construct a formal development consisting of datatypes, axioms, definitions, and lemmas. The definitions can be compiled and executed as Common Lisp functions. When a recursive definition is presented to ACL2, the prover attempts to establish the termination of the recursion scheme. It does this by constructing a measure or a size function on the arguments that decreases with each recursive call according to a well-founded ordering, that is, an ordering without any infinite descending chains. The prover retains an induction scheme, based on the termination ordering, for use in induction proofs, and also infers a small amount of useful type information about the definition for future use.

The ACL2 interactive prover can be used to attempt to prove conjectures. When given a conjecture, the prover tries to prove the theorem using a cascade of simplifications, a recursive waterfall, involving equality and propositional reasoning, case analysis, and rewriting with definitions and lemmas. Each step can generate zero or more subgoals, each of which is processed from the top of the waterfall. When there are no remaining subgoals, the proof has succeeded. When a conjecture does not succumb to simplification, the prover attempts a proof by induction. The termination arguments for the recursive definitions that appear in the conjecture are used to construct an induction scheme. The subcases of the induction proof are subject to the recursive waterfall. Any unproven subgoals are generalized so that a nested induction can be applied to them.

We give a brief example of ACL2 at work. The theories of numbers and lists is built into ACL2. Lists are defined by the constructors NIL and CONS, where the latter constructor has accessors CAR and CDR, and a corresponding recognizer CONSP. The operation (ENDP X) is defined as (NOT (CONSP X)). Boolean reasoning is internalized so that the truth value ⊤ is represented by the symbol T and ⊥ is represented by the symbol NIL. A formula φ with free variables x₁, …, xₙ is valid if no ground instance of it is equal to NIL.

The recursive definition of TRUE-LISTP describes a predicate that holds only when the argument X is a list that is terminated by NIL. The Common Lisp equality predicate EQ is used to compare X to the symbol NIL.

```
(DEFUN TRUE-LISTP (X)
  (IF (CONSP X)
      (TRUE-LISTP (CDR X))
      (EQ X NIL))
```

The operation of reversing a list can be defined as below. It can be shown to terminate by the well-founded ordering on the size of X. In general, termination measures can be given using a representation of the ordinals below ϵ₀, the least ordinal α such that α = ωα. These ordinals and their corresponding ordering can be defined in primitive recursive arithmetic and can describe nontrivial nested lexicographic orderings.

```
(DEFUN REV (X)
  (IF (ENDP X)
      NIL
      (APPEND (REV (CDR X)) (LIST (CAR X))))
```

The definition can be evaluated at the prompt so that we can check that (REV '(3 4 5)) evaluates to the list (5 4 3), and (REV (REV '(3 4 5))) is (3 4 5). If we now try
to prove the conjecture REV_OF_REV below, the proof attempt fails.

\[
\text{(DEFTHM REV_OF_REV)} \quad \text{(EQUAL (REV (REV X)) X)}
\]

Since REV is a recursive function, ACL2 attempts a proof by induction which eventually yields a subgoal of the form \((\text{IMPLIES} \ (\text{NOT} \ \text{(CONSP} \ X)) \ (\text{NOT} \ X))\), which fails because it is possible for \(X\) to be a non-CONSP without being equal to NIL. This claim obviously only holds if \(X\) is constrained to satisfying the TRUE-LISTP predicate. If we now fix the statement of the conjecture, ACL2 is able to prove this automatically.

\[
\text{(DEFTHM REV_OF_REV)} \quad \text{(IMPLIES} \ \text{(TRUE-LISTP} \ X) \ \text{(EQUAL (REV (REV X)) X))}
\]

In attempting the proof by induction, ACL2 is able to conjecture that the main induction subgoal requires the lemma below, which it is able to prove directly by induction.

\[
\text{(EQUAL (REV (APPEND RV (LIST X1)))}} \quad \text{(CONS X1 (REV RV))}
\]

Large sequences of definitions and theorems can be developed in this manner and packaged into files containing definitions and theorems, called books. ACL2 has been used in an impressive list of verifications in logic [Shankar 1994], number theory [Russinoff 1988], hardware [Hunt, Jr. 1989], system verification [Bevier et al. 1989] including several involving commercial systems. These include the verification of floating-point hardware at AMD [Russinoff 1999] and various processor and systems verification efforts at Rockwell-Collins [Greve et al. 2003]. Bundy [2001] describes the various approaches to automating inductive proofs.

5.3. The LCF Family of Tactical Proof Systems

LCF is actually an acronym for Scott’s Logic for Computable Functions [Scott 1993] but the name is more closely associated with a class of extensible proof checkers pioneered by Gordon et al. [1979]. The programming language ML [Gordon et al. 1977] was developed to serve as the metalanguage for defining proof checkers in the LCF style. The key idea is to introduce a datatype \(\text{thm}\) of theorems. The constructors of this datatype are the inference rules that map \(\text{thm}\) list to \(\text{thm}\). Tactics written in ML are used to convert goals to subgoals so that \(\tau(G) = \{S_1, \ldots, S_n\}\) with a validation \(v\) such that \(v(S_1, \ldots, S_n) = G\). A proof can be constructed backwards by applying tactics to goals and subgoals or forwards from axioms by building validations using inference rules.

Harrison [2001] presents a simple LCF-style implementation of a proof system for equational logic displayed in Figure 5 (page 13). First, the \(\text{thm}\) datatype is introduced with the signature Birkhoff.

```ml
module type Birkhoff =
sig
  type thm
  val axiom : formula -> thm
  val inst : (string, term) func -> thm -> thm
  val refl : term -> thm
  val sym : thm -> thm
  val trans : thm -> thm -> thm
  val cong : string -> thm list -> thm
  val dest_thm : thm -> formula list * formula
end;
```

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.
A structure of this signature can then be defined to implement the datatype `thm` as a subset of sequents of the form \(\Gamma \vdash \phi \) that are constructed using the inference rules implemented in Figure 13. The constructor `Fn` applies a function symbol to a list of arguments, and the constructor `Atom` applies the equality symbol to a list of two arguments. A sequent \(\Gamma \vdash \phi \) is represented as a pair consisting of the list of assumptions \(\Gamma \) and the equality \(\phi \). As an example of an inference rule, the congruence rule `cong` takes a list of theorems of the form \(\Gamma_1 \vdash s_1 = t_1, \ldots, \Gamma_n \vdash s_n = t_n \) and returns the sequent \(\bigcup_i \Gamma_i \vdash f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n) \).

By composing the constructors for the `thm` datatype, we can construct derived inference rules in terms of functions that take a list of elements of type `thm` to a `thm`. It is also possible to build proofs backwards from goal sequents to subgoal sequents through the application of a tactic to the goal as described above. Tactics can be defined in the metalanguage ML. The application of a tactic to a goal can generate zero or more subgoals, or terminate with an exception. The application of a tactic can generate an inappropriate validation in which case the proof would eventually fail. Tactics can be composed using `tacticals` such as those for sequencing, alternation, and repetition. Tacticals can also be defined in the metalanguage ML. The LCF approach thus facilitates the construction of interactive proof checkers that can be extended with derived inference rules while preserving soundness relative to a small kernel.

Many proof checkers are based on the LCF approach, including HOL [Gordon and Melham 1993], HOL Light [Harrison 1996], Coq [Bertot and Castéran 2004], Isabelle [Paulson 1994], LEGO [Luo and Pollack 1992], and Nuprl [Constable et al. 1986]. We examine some of these systems in greater detail below.

5.3.1. HOL and Its Variants. Automated reasoning in higher-order logic was actively investigated by Andrews in his TPS system [Andrews et al. 1988]. The use of higher-order logic in interactive proof checking was initiated by Hanna and Daeche [1986] and Gordon [1985] to address hardware description and verification. Currently, the most popular higher-order logic proof checkers are HOL4 [Slind and Norrish 2008], HOL Light [Harrison 1996], and Isabelle/HOL [Nipkow et al. 2002]. These proof checkers are widely used in formalizing mathematics and program semantics, and in verifying
hardware, distributed algorithms, cryptographic protocols, and floating point algorithms. Recently, Hales [2002, 2009] has initiated the Flyspeck project to verify his computer-based proof of Kepler’s conjecture about the optimality of the cannonball packing of congruent spheres. The verification of the proof involves Coq, HOL Light, and Isabelle/HOL.

The HOL Light system, for example, is based on a very small kernel with types for Booleans and individuals, inference rules for equality (reflexivity, symmetry, transitivity, congruence, β-reduction, extensionality, and equivalence), and axioms for infinity and choice. In addition, there is a definition principle for defining new constants. New types can be introduced axiomatically provided they are shown to be interpretable in the existing type system. The higher-order logic admits parametric polymorphism through the use of type variables. The resulting kernel runs to about 500 lines of OCaml code. HOL Light has been used extensively for the verification of floating point hardware algorithms [Harrison 2006] and for formalizing several interesting proofs from various branches of mathematics [Hales 2007] (see also http://www.cs.ru.nl/~freek/100/hol.html).

5.3.2. Nuprl and Coq: Proofs in Constructive Type Theories. Both Nuprl [Constable et al. 1986] and Coq [Coquand and Huet 1988; Bertot and Castéran 2004] are based on the Curry–Howard isomorphism [Howard 1980] between propositions and types. The implicational fragment of intuitionistic logic offers a simple illustration of this isomorphism. The natural deduction sequent \(\Gamma \vdash \phi \) represented by the judgment \(x_1 : \gamma_1, \ldots, x_n : \gamma_n \vdash t : \phi \) and asserts that \(t \) is a proof term for \(\phi \) from the hypothetical proof terms (variables) \(x_1 \), \ldots, \(x_n \) corresponding to the assumptions \(\Gamma = \gamma_1, \ldots, \gamma_n \). Here, the context \(x_1 : \gamma_1, \ldots, x_n : \gamma_n \) contains exactly one declaration \(x_i : \gamma_i \) for each variable \(x_i \). The introduction rule for implication builds a proof term using lambda-abstraction, whereas the elimination rule uses function application corresponding to the use of the modus ponens rule of inference. Thus, complete proofs are represented by well-typed closed terms of the typed lambda calculus, and the propositions proved by these proofs correspond to the types for these terms. A proposition is provable if the corresponding type is inhabited by a term.

If the above proof rules (see Figures 14–16) are viewed as the type rules of a simply typed lambda calculus, then the formula \(\phi_1 \Rightarrow \phi_2 \) corresponds to a type \(A_1 \rightarrow A_2 \). The simply typed lambda calculus can be extended in several directions. One extension is to add conjunction \(\phi_1 \land \phi_2 \) with the introduction and elimination rules shown in Figure 15. The conjunction \(\phi_1 \land \phi_2 \) then corresponds to the product type \(A \times B \). Similarly, intuitionistic disjunction can be presented with rules that correspond to the typing rules for the disjoint union \(A + B \) over types \(A \) and \(B \).

One can extend the proof/type rules in the direction of first-order logic by introducing dependent types. Dependent product types are represented as \((\forall x : A).B(x))\) and characterize those functions that map elements \(a \) of type \(A \) to elements of type \(B(a) \). Dependent sum types are represented as \((\exists x : A).B(x))\), and capture pairs of elements.
the function type for implication and conjunction can be modified as shown in Figure 16. In particular, the function type $A \to B$ is just $(\forall x : A).B$, where B does not contain a free occurrence of x, and similarly $A \times B$ is just $(\exists x : A).B$, where B does not contain a free occurrence of x.

The typed lambda calculus can be extended along a different dimension to allow type abstraction. Dependent typing allows types to be parameterized by types. Let \sharp represent the *kind* of types so that $\Gamma \vdash (\forall x : A).B : \sharp$ follows from $\Gamma \vdash A : \sharp$ and $\Gamma, x : A \vdash B : \sharp$. Then the type of the polymorphic identity function $(\lambda(\alpha : \sharp). (\lambda(x : \alpha).x))$ is $(\forall(\alpha : \sharp). \alpha \to \alpha)$. Polymorphism can also be used to introduce representations for inductive types like natural numbers and lists. We can also define the other logical connectives using type quantification.

\[
\begin{align*}
A \to B &= (\forall(x : A).B), x \text{ not free in } B \\
A + B &= (\forall(C : \sharp). (A \to C) \to (B \to C) \to C) \\
(\exists(A : \sharp).B) &= (\forall(C : \sharp). (\forall(x : A).B \to C) \to C)
\end{align*}
\]

There is one further dimension along which the expressiveness of the calculus can be increased. While the introduction of the kind \sharp yielded types of the form $\forall(A : \sharp).A \to A$, we still do not have lambda-abstraction with respect to type variables. For example, we cannot construct $\lambda(A : \sharp). A \to A$. For this purpose, the notation \Box is introduced to represent the class of well-formed kinds so that the typing judgment $\Gamma \vdash A : \sharp$ holds, where $\sharp \to \sharp : \Box$. These three dimensions of term-parametric types (dependent typing), type-parametric terms (polymorphism), and type-parametric types (type constructors) form the three dimensions of Barendregt's cube [Barendregt 1992] of typed lambda-calculi that satisfy strong normalization: all reduction sequences terminate. The Calculus of Constructions [Coquand and Huet 1988] is the most expressive of these calculi. It is based on a typed lambda calculus that integrates both dependent typing and polymorphism, while admitting type abstraction in constructing types. In this calculus, the polymorphic dependently typed lambda calculus is augmented with rules for \Box such that $\Gamma \vdash A : \Box$ holds and $\Gamma \vdash (\forall x : \alpha).B : \Box$ if $\Gamma \vdash \alpha : \Box$ and $\Gamma, x : \alpha \vdash B : \Box$. If two types A and B, when fully β-reduced, are identical modulo the renaming of bound variables, then any term of type A also has type B. We then obtain a type system shown in Figure 17 that is the foundation for the Coq proof checker [The Coq Development Team 2009]. The system also includes a mechanism for directly defining inductive types [Paulin-Mohring 1993].

The Coq system has been used in several significant proof checking exercises including a complete proof of the four color theorem [Gonthier 2008], Gödel's first incompleteness theorem [O'Connor 2005], the correctness of a compiler for a subset of the C language [Leroy 2007], and the correctness of various inference procedures [Théry 1998].

The logic of the Nuprl proof checker is based on Martin-Löf’s intuitionistic type theory [Martin-Löf 1980]. Nuprl employs Curry’s version of the typed lambda calculus where the variables in the terms are not restricted to specific types, but type

![Figure 16. Proof terms for quantification.](image-url)
inference is used to derive the types. Propositions in this type system are built from basic types such as int and void (the empty type) using dependent products \((\forall x \in A).B(x)\) corresponding to universal quantification, and dependent sums \((\exists x \in A).B(x)\) corresponding to existential quantification. Other type constructors include the subset type \(\{x : A \mid B\}\) which contains elements \(a\) of type \(A\) such that the type \(B(a)\) is inhabited, and the quotient type \(A/E\), where \(E\) is an equivalence relation on \(A\). The type atom of character strings and the type A list of lists over \(A\) are also included in the type system. For any type \(A\) and terms \(a\) and \(b\) of type \(A\), the expression \(a = b \in A\) is also a type. There is also a primitive type \(a < b\) for \(a\) and \(b\) of type int. Finally, there is a cumulative hierarchy of type universes \(U_1, \ldots, U_i, \ldots\), where each \(U_i\) is a term of type \(U_{i+1}\) and every term of type \(U_i\) is also of type \(U_{i+1}\) for \(i > 0\). Nuprl has been used in optimizing the protocol stack for a high-performance group communication system [Liu et al. 1999].

5.4. Logical Frameworks: Isabelle, \(\lambda\)-Prolog, and Twelf

A logical framework is a way of defining a wide range of object logics while sharing the implementation of basic operations like substitution. When representing the syntax of object logics, there is a choice between first-order abstract syntax using Lisp-style s-expressions or higher-order abstract syntax [Harper et al. 1987; Pfenning 2001] that employs lambda abstraction at the metalogical level as a way of capturing substitution at the object level. Logical frameworks such as \(\lambda\)-Prolog [Miller and Nadathur 1986; Nadathur and Miller 1990], Isabelle [Paulson 1994], and Twelf [Pfenning and Schürmann 1999] employ higher-order abstract syntax. Logics are represented in a small subset of higher-order intuitionistic logic similar to the Horn fragment used in logic programming. This way, if \(\Phi\) is the type of formulas in the object language, then \(\land, \lor,\) and \(\Rightarrow\) in the object logic can be represented by constructors and, or, and implies with the type \(\Phi \rightarrow \Phi \rightarrow \Phi\), and \(\neg\) by not with the type \(\Phi \rightarrow \Phi\). Interestingly, however, universal and existential quantification can be represented by higher-order constructors forall and exists of type \(i \rightarrow \Phi\), where \(i\) is the type of individuals in the higher-order metalogic.

The next step is to represent proofs. One approach is to represent a proof predicate \(\text{proof}(\pi, \phi)\) to represent the assertion that \(\pi\) is a proof of \(\phi\). Then, we can represent the proof rules as logic programs so that the natural deduction rules for implication are as follows.

\[
\text{proof}(\text{imp}_i(P1), \text{implies}(A, B))
\leq\neg (\forall P, \text{proof}(P, A) \Rightarrow \text{proof}(P1(P), B)).
\]
proof(imp_e(P1, P2, A, B)) :- proof(P1, implies(A, B)), proof(P2, A).

Note that the antecedent of the introduction rule uses universal quantification and implication. The logic programming fragment used here is therefore more expressive than the Horn clause fragment used by Prolog. The introduction and elimination rules for universal quantification can also be transcribed as logic programming clauses.

proof(forall_i(P), forall(A)) :- (\forall(c : i).proof(P(c), A(c))).

proof(forall_e(P, t), A(t)) :- proof(P, forall(A)).

The Isabelle logical framework [Paulson 1994] uses intuitionistic higher-order logic with implication, universal quantification, and equality with a resolution strategy for constructing object-level proofs by means of theorem proving at the meta-level. Many different object logics have been formalized in Isabelle, but ZF set theory and higher-order logic (HOL) are the ones that are most developed. Isabelle has a number of generic interfaces for defining simplifiers and other inference tools, including a tableau-based proof search engine for first-order logic. Isar [Wenzel 1999] is a declarative style of proof presentation and verification for Isabelle inspired by the Mizar proof checking system [Rudnicki 1992]. Isabelle/HOL has been used for verifying a number of cryptographic protocols [Paulson 1998]. It is also used within the F nails project [Hales et al. 2009], the Verisoft project for the pervasive verification of a distributed real-time system [Knapp and Paul 2007], and the ongoing verification of the seL4 microkernel [Elkaduwe et al. 2008].

5.5. PVS: Integrating Type Systems and Decision Procedures

The Prototype Verification System (PVS) [Owre et al. 1995] occupies the middle ground between a highly automated theorem prover like ACL2 and an interactive checker for formal proofs in the LCF style. In particular, PVS exploits the synergy between an expressive specification language and an interactive proof checker that can be used to develop proof scripts that integrate several automated tools. The PVS specification language is based on higher-order logic enhanced with predicate subtypes (similar to the subset type from Nuprl), dependent types, structural subtypes (where a record can have more fields than its supertype), inductive and coinductive datatypes, parametric theories, and theory interpretations. The PVS proof checker builds on a range of decision procedures including SAT and SMT procedures [Shostak et al. 1982; Dutertre and de Moura 2006b], binary decision diagrams, symbolic model checking [Rajan et al. 1995], predicate abstraction [Saïdi and Graf 1997; Saïdi and Shankar 1999], and decision procedures for monadic second-order logic and Presburger arithmetic (MONA) [Elgaard et al. 1998]. Even with automation and scripting, interaction is still needed in PVS to direct the induction, case analysis, definition expansion, and quantifier instantiation steps needed to build readable proofs.

A significant subset of the PVS language is executable as a functional language. The code generated from this subset includes optimizations for in-place updates. The PVS framework is open so that new inference tools can be plugged into the system. PVS has
been used as a back-end inference framework in a number of tools including TLV [Pnueli and Shahar 1996], Why [Filliâtre and Marché 2007], LOOP [van den Berg and Jacobs 2001], Bandera [Corbett et al. 2000], PVS-Maple [Adams et al. 2001], TAME [Archer and Heitmeyer 1996], and InVeSt [Bensalem et al. 1998]. PVS has also been applied in a number of significant verification exercises covering distributed algorithms [Miner et al. 2004], hardware verification [Rueß et al. 1996], air-traffic control [Carreño and Muñoz 2000], and computer security [Millen and Rueß 2000].

6. LOOKING AHEAD

Logic is a fertile semantic foundation for writing specifications, building models, and capturing program semantics. It has been used this way in verification for a very long time, but recent advances in the level of automation have made it possible to apply these techniques in a scalable way to realistic software. These automated tools include satisfiability procedures, rewriting engines, proof search procedures, and interactive proof checkers. Individual tools will of course continue to gain in power and expressiveness. They will also find novel applications in verification as well as in areas like artificial intelligence and computer-aided design. The major advances will be in the integration of heterogeneous deductive capabilities, including

1. **Semantic interoperability between different inference procedures and logics through a semantic tool bus.** Many interesting analyses require cooperation between satisfiability procedures, static analysis tools, model checkers, rewriters, and proof search engines for the purpose of generating and checking abstractions, assertions, and termination ranking functions.

2. **Better integration of constraint solving, matching, and unification** [Baader and Snyder 2001]. There has already been a lot of work in adding associative-commutative operations and higher-order unification [Dowek 2001], but there is a rich set of theories such as arithmetic, encryption, arrays, and partial orders, where unification enhanced with constraint solving can be very effective.

3. **Satisfiability under quantification.** This is another area where there is plenty of scope for dramatic improvements. Quantified Boolean Formulas (QBF) augment propositional formulas with Boolean quantification. QBF satisfiability procedures are being actively developed for a variety of applications. Proof search procedures for quantified formulas that exploit SMT solvers can be significantly more effective than pure first-order proof search [Stickel 1985; Ganzinger and Korovin 2006].

5. **Experimental evaluation and benchmarking.** Competitions such as CASC [Sutcliffe and Suttner 2006], SAT [Simon et al. 2005], and SMT-COMP [Barrett et al. 2005] have led to the accumulation of a useful body of benchmarks for optimizing the performance of inference procedures. A lot of the recent progress in inference procedures can be attributed to these competitions and the standardized benchmarks.

6. **Fine-grained classification of feasibility.** Many useful fragments of logic have satisfiability problems that are either infeasible or undecidable, yet there are many instances where this does not pose an insurmountable obstacle to practical use. There is clearly a lot of work that needs to be done in characterizing the class of
problems that are feasibly solvable along with techniques that are effective in practice.

(7) Synthesis. The synthesis of formulas satisfying certain constraints including interpolants, invariants, abstractions, interfaces, protocols, ranking functions, winning strategies, and ruler-and-compass constructions.

7. CONCLUSIONS

Software verification is a challenging problem because it relates three complex concepts: software, properties, and proofs. Automated deduction is an important tool for stating and verifying properties of software, supporting stepwise program refinement, generating test cases, and building evidence supporting formal claims for software correctness. Recent years have seen exciting progress in the automation and efficiency of theorem provers as well as in novel applications of automated deduction techniques. While automated deduction is a highly developed discipline with a sophisticated range of tools and techniques, there is a coherence to the core ideas that we have presented here. This is illustrated, for example, in the way that the DPLL satisfiability procedure generates proofs based on resolution. Automated deduction could fruitfully interact with other disciplines like philosophy, biology, economics, knowledge representation, databases, programming languages, and linguistics. Vannevar Bush, in his prescient 1945 article As We May Think, predicted that

"Logic can become enormously difficult, and it would undoubtedly be well to produce more assurance in its use. . . . We may some day click off arguments on a machine with the same assurance that we now enter sales on a cash register."

This prediction, like his other ones, may yet prove accurate, but for software verification, automated deduction is already a critical technology.

ACKNOWLEDGMENTS

Tony Hoare and Jayadev Misra suggested the idea for this survey article and shepherded it through many revisions with copious feedback, advice, and encouragement. Bruno Dutertre, Jean-Christophe Filliâtre, John Harrison, David Naumann, Sam Owre, John Rushby, Andreas Podelski, Alexandre Rademaker, Mark-Oliver Stehr, and Ashish Tiwari carefully read through earlier drafts and suggested many improvements. Bill McCune and Matt Kaufmann responded with clarifications on specific points. The article has been significantly improved by the detailed, authoritative, and deeply knowledgeable comments from the anonymous referees.

REFERENCES

N. Shankar

Automated Deduction for Verification

BOYER, R. S., ELSIAS, B., AND LEVITT, K. N. 1975. SELECT—A formal system for testing and debugging programs by symbolic execution. *ACM SIGPLAN Notices* 10, 6 (June), 234–245.

Automated Deduction for Verification

GÖDEL, K. 1967. On formally undecidable propositions of principia mathematica and related systems. (First published 1930 and 1931.)

Automated Deduction for Verification

MARTIN-LÖF, P. 1980. Intuitionistic Type Theory. Bibliopolis, Napoli, Italy.

N. Shankar

N. Shankar

ZERMELO, E. 1908. Untersuchungen über die Grundlagen der Mengenlehre I. *Mathematische Annalen* 59, 261–281. (Translation by van Heijenoort in *From Frege to Gödel*.)

Received February 2009; revised April 2009; accepted June 2009

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.