Network Log Anonymization: Application of Crypto-PAn to Cisco Netflows

Adam Slagell, Jun Wang and William Yurcik,

National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign
Motivation for Sharing Logs

• **Share for**
 – *Security Research*
 • *Create better detection tools and test them*
 – *Security Operations*
 – *Network Measurements*

• **Who says it's important?**
 – *DHS with Information Sharing and Analysis Centers*
 – *National Strategy to Secure Cyberspace*

• **Why Netflows?**
IP Anonymization Techniques

• Black Marker Effect
 – Great information loss
 – Cannot correlate attacks against machine X

• Truncation
 – Finer grained control of information loss
 – Used for Source Report at ISC
 • Origins of scans

• Random Permutations
 – Injective Mapping, a type of pseudonymization
 – Allows correlation but destroys structure
Prefix-Preserving Anonymization

• Definition
 – Let P be a permutation of the set of IP addresses
 – P is a prefix-preserving anonymization function if and only if for all IP addresses x and y:
 • x and y match on exactly the same length prefix as P(x) and P(y)

• Preserves subnet structures and relationships

• Structure can of course be exploited by attackers
Prefix Preserving Tools

- **Crypto-PAn**
 - Key based solution
- **TCPdpriv**
 - Table based solution for TCPdump files
- **Ip2anonip**
 - A filter to anonymize IP addresses based off TCPdpriv
- **Ipsumdump**
 - Summarizes TCP/IP dumps
 - Optionally performs prefix-preserving anonymization based off TCPdpriv
What We Have Done

• The problem:
 – Our visualization tools use netflows
 – We need students to work on these projects
 – Information is sensitive

• Subnet structure is vital to tools. Thus Crypto-PAn is ideal.

• No key generator in Crypto-Pan

• Created a pass-phrase based key generator without extra libraries
Key Generator

- Input passphrase (unechoed), max 256 bytes
- Wrap till buffer filled
- CBC encrypt with fixed key
 - This combines data to create an intermediate key
 - Why can’t we just XOR blocks?
 - Cannot stop here, processes is reversible
- Use the intermediate key to re-encrypt the original buffer
 - Take the last 32 bytes as the end key
 - Even without dropping 244 bytes, this is irreversible
Performance

• Work on binary logs
 • Avoids extra conversions

• On laptop still less than 20 minutes for 2 Gigabytes of flows

<table>
<thead>
<tr>
<th>MACHINE (GHz)</th>
<th>Records/Second</th>
<th>Total Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual 2.4 Xeon</td>
<td>75015.342</td>
<td>10.45</td>
</tr>
<tr>
<td>Single 2.4 Xeon</td>
<td>42686.279</td>
<td>18.37</td>
</tr>
<tr>
<td>1.7 Pentium M</td>
<td>40113.674</td>
<td>19.55</td>
</tr>
</tbody>
</table>
Conclusions & Future Work

- Feasible solution for even large universities
 - Provides high utility, but lower security
- Many attacks on anonymization schemes
 - Inference attacks, chosen plaintext, structure exploitation
- Need new options to balance utility & security
 - Different levels of anonymization
 - Means considering more fields
 - Different types of logs
Thank You

• **Email:** slagell@ncsa.uiuc.edu

• **Links of Interest**