1. Exercise 4.1
 (a) Yes, because M on input 0100 ends in an accept state.
 (b) No, because M on input 011 ends in a non-accept state.
 (c) No, because the input is not in correct form: the second component of the input is missing.
 (d) No, because the input is not in correct form: the first component should be a regular expression but not a DFA.
 (e) No, because M accepts λ and hence, $L(M) \neq \emptyset$.
 (f) Yes, because $L(M) = L(M)$.

2. Exercise 4.2
 The problem of testing whether a DFA and a regular expression are equivalent, can be expressed by the following language:
 $$EQ_{\text{DFA-REX}} = \{ < M, r > | M \text{ is a DFA and } r \text{ is a regular expression } \}$$
 and $L(M) = L(r)$.
 We can prove the language $EQ_{\text{DFA-REX}}$ is decidable by constructing a TM P that decides it as follows:
 $P =$ "On Input $< M, r >$:

 (a) Convert the regular expression r into a DFA M_r by using the procedure described in theorem 1.28.

 (b) Apply the algorithm given in theorem 4.5 to decide whether $< M, M_r > \in EQ_{\text{DFA}}$.

 (c) If $< M, M_r > \in EQ_{\text{DFA}}$ the accept, else reject."

3. Exercise 4.3
 proof: Let M_{Σ^*} be a DFA that accepts Σ^* (this can be easily constructed), then for every DFA A,
 $$A \in ALL_{\text{DFA}} \iff < A, M_{\Sigma^*} > \in EQ_{\text{DFA}}$$
 So, to decide whether $A \in ALL_{\text{DFA}}$, we just need to decide whether $< A, M_{\Sigma^*} > \in EQ_{\text{DFA}}$. The latter can be done by applying the proof in theorem 4.5. Thus ALL_{DFA} is decidable.