1. Textbook, Page 271, Exercise 7.5.

 \textbf{Proof.} Not satisfiable.

 \[(x \lor y) \land (x \lor \overline{y}) \land (\overline{x} \lor y) \land (\overline{x} \lor \overline{y}) \equiv ((x \lor (y \land \overline{y})) \land ((\overline{x} \lor (y \land \overline{y})))) \equiv x \land \overline{x} \equiv F\]

 a) Union: \(L_1 \in P, L_2 \in P \Rightarrow L_1 \cup L_2 \in P\)

 \textbf{Proof.} \(L_1 \in P, L_2 \in P \Rightarrow L_1, L_2 \) are decidable in polynomial time on deterministic single-tape TM \(M_1\) and \(M_2\). Suppose \(M_1\) runs in time \(O(n^s)\) and \(M_2\) runs in time \(O(n^l)\). A polynomial time deterministic single-tape TM \(M\) operates as follows:

 On input \(x\):

 1. Simulate \(M_1\). If \(M_1\) accepts \(x\), then ACCEPT, otherwise goto step 2.
 2. Simulate \(M_2\) on input \(x\). If \(M_2\) accepts \(x\), then ACCEPT, otherwise, REJECT.

 Apparently, this TM \(M\) decides language \(L_1 \cup L_2\). Now we analyze this algorithm to show that it runs in polynomial time. Step 1 takes \(O(n^s)\) time and Step 2 takes \(O(n^l)\) time. So \(M\) runs at most \(O(n^s + n^l)\) time. Hence \(M\) is a polynomial time deterministic Turing Machine.

 b) Concatenation: \(L_1 \in P, L_2 \in P, L = \{uv | u \in L_1, v \in L_2\} \Rightarrow L \in P\)

 \textbf{Proof.} \(L_1 \in P, L_2 \in P \Rightarrow L_1, L_2\) are decidable in polynomial time on deterministic single-tape TM \(M_1\) and \(M_2\). Suppose \(M_1\) runs in time \(O(n^s)\) and \(M_2\) runs in time \(O(n^l)\). A polynomial time deterministic single-tape TM \(M\) operates as follows:

 On input \(x\)

 FOR each division \(x = uv\) of the input DO

 \{
 1. Copy \(u\) on the tape. Go to step 2;
 2. Simulate \(M_1\) on input \(u\). If \(M_1\) accepts \(u\), then go to step 3, otherwise, BREAK;
 3. Copy \(v\) on the tape. Go to step 4;
 4. Simulate \(M_2\) on input \(v\). If \(M_2\) accepts \(v\), then ACCEPT, otherwise, BREAK;
 \}

 REJECT.

 Apparently, this TM \(M\) decides the concatenation of \(L_1\) and \(L_2\). Now we analyze this algorithm to show that it runs in polynomial time. In each loop, it costs at most \(O(n^s + n^l + n) = O(n^{\max(s,l)})\) time. There are \(n + 1\) divisions of input \(x\), so it repeats at most \(n + 1\) times. The running time of \(M\) is at most \(O(n^{\max(s,l)} \star (n + 1)) = O(n^{\max(s,l)} + 1)\). Hence \(M\) is a polynomial time deterministic Turing Machine.
c) Complement: \(L \in P \Rightarrow \overline{L} \in P \)

Proof. \(L \in P \Rightarrow L \) is decidable in polynomial time on a deterministic single-tape TM \(M \). Suppose \(M \) runs in time \(O(n^k) \) A polynomial time deterministic single-tape TM \(M' \) operates as follows:

On input \(x \):
1. Simulate \(M \). If \(M \) accepts \(x \), then REJECT, otherwise ACCEPT.

Apparently, this TM \(M' \) decides language \(L \) since \(M' \) runs in time \(O(n^k) \). \(\square \)

a) Union: \(L_1 \in NP, L_2 \in NP \Rightarrow L_1 \cup L_2 \in NP \)

Proof. \(L_1 \in NP, L_2 \in NP \Rightarrow L_1, L_2 \) are decided by nondeterministic polynomial time TM \(M_1 \) and \(M_2 \). Suppose \(M_1 \) runs in time \(O(n^s) \) and \(M_2 \) runs in time \(O(n^l) \). We can build a 3-tape nondeterministic TM \(M \) that recognize \(L_1 \cup L_2 \):

On input \(x \):
1. Copy input \(x \) to both Tape 2 and Tape 3;
2. Simultaneously simulate \(M_1(x) \) on Tape 2 and \(M_2(x) \) on Tape 3;
3. Wait until one of the simulation halts and accepts;
4. ACCEPT.

Apparently, this TM \(M \) recognizes language \(L_1 \cup L_2 \). Now we analyze this algorithm to show that it runs in polynomial time. Step 1 takes \(2^n \) time and Step 2 takes \(O(n^{\max(s,l)}) \) time. So \(M \) runs at most \(O(n^{\max(s,l)}) \) time. Hence \(M \) is a polynomial time nondeterministic Turing Machine. \(\square \)

b) Concatenation: \(L_1 \in NP, L_2 \in NP, L = \{uv | u \in L_1, v \in L_2\} \Rightarrow L \in NP \)

Proof. \(L_1 \in NP, L_2 \in NP \Rightarrow L_1, L_2 \) are decided by nondeterministic polynomial time TM \(M_1 \) and \(M_2 \). Suppose \(M_1 \) runs in time \(O(n^s) \) and \(M_2 \) runs in time \(O(n^l) \). We can build a 3-tape nondeterministic TM \(M \) that recognize the concatenation of \(L_1 \) and \(L_2 \):

On input \(x \)
\[s = 1; \]
REPEAT
FOR each division \(x = uv \) of the input DO
\{
1. Copy \(u \) to Tape 2 and \(v \) to Tape 3;
2. Simulate \(M_1 \) on Tape 2 for \(s \) steps;
3. Simulate \(M_2 \) on Tape 3 for \(s \) steps;
4. If both simulations ended in accept, then HALT and ACCEPT;
\}
\[s = s + 1; \]
FOREVER.

Apparently, this TM \(M \) decides the concatenation of \(L_1 \) and \(L_2 \). Now we analyze this algorithm to show that it runs in polynomial time. In each FOR loop, it costs at most \(2s \) steps. There are \(n + 1 \) divisions of input \(x \), so it repeats at most \(2s(n + 1) \) times. \(s \) could be at most \(\max(O(n^s), O(n^l)) \) time. The running time of \(M \) is less than \(O(2(n^\max(s,l))^2(n + 1)) = O(n^{2\max(s,l)+1}) \). Hence \(M \) is a polynomial time deterministic
Turing Machine.