\[E_{T_m} = \{ <M> \mid M \text{ is a TM and } L(M) = \emptyset \}. \]

The \(E_{T_m} \) is undecidable.

Given \(<M> \) and \(w \), define \(M_w \) to be a TM that behaves as follows:

- On input \(x \):
 - If \(x \neq w \) then reject
 - If \(x = w \) then simulate \(M \) on \(w \). \(M_w \) accepts \(w \) iff \(M \) accepts \(w \).

Observe that \(M_w \) is easy to construct, given \(<M> \) and \(w \).

Observe that

\[(<M>, w) \in \overline{A}_{T_m} \iff M \text{ does not accept } w \iff (M_w) \in E_{T_m}.\]

Suppose \(A \) is an alg. that decides \(E_{T_m} \). Then decide whether

\[(<M>, w) \in A_{T_m} \text{ as follows:} \]

- Input \((M_w) \) to \(A \). If \(A \) answers that \(L(M_w) \) is empty, then \(M_w \) does not accept \(w \), so \(M \) does not accept \(w \), so \((<M>, w) \in \overline{A}_{T_m}. \)

If \(A \) answers that \(L(M_w) \neq \emptyset \), then \(M \) accepts \(w \).

i.e., existence of \(A \) implies that \(A_{T_m} \) is decidable.

So, \(E_{T_m} \) is undecidable.
Today we showed that the following problem is undecidable:

instance. Turing machine M
question. Does M accept (M)?

Then, we showed the following is undecidable:

instance. Turing machine M
and input word x
question. Does M accept x?

Today we show the following is undecidable:

instance. Turing machine M
question. $L(M) = \Sigma^*$
10/24/2008

\[P \vdash M \]

A mapping reducible to B if there is a computable \(f \) such that for all \(x \):

\[x \in A \iff f(x) \in B \]

\[A \leq_m B \]

Theorem 5.22

If \(A \leq_m B \) and \(B \) decidable, then \(A \) is decidable.

Corollary 5.23

If \(A \leq_m B \) and \(A \) undecidable, then \(B \) is undecidable.

Application: We show \(k \leq_m \text{HALT} \)

Therefore, \(\text{HALT} \) is undecidable.
\[\text{All}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \} \]

Theorem. \(k \leq_m \text{All}_{\text{TM}} \)

Corollary. \(\text{All}_{\text{TM}} \) is undecidable.

Proof of Theorem.

Want \(\langle M \rangle \in k \iff f(<M>) \in \text{All}_{\text{TM}} \)

For each \(\text{TM} M \), we define a \(\text{TM} D_M \) s.t.
\(\langle M \rangle \in k \iff L(D_M) = \Sigma^* \). Then take

\[f(<M>) = <D_M > \text{ to obtain } \]
\[\langle M \rangle \in k \iff L(D_M) = \Sigma^* \]
\[\iff <D_M > \in \text{All}_{\text{TM}} \]
\[\iff f(<M>) \in \text{All}_{\text{TM}}, \text{ and we're done.} \]

The construction:*

Design \(D_M \) to behave as follows: input \(x \) to \(D_M \), where \(x \) is a word in \(M \)'s input alphabet; simulate \(M \) on \(<M> \);

if \(M \) accepts \(<M> \), then accept \(x \)

(Note that \(D_M \) is oblivious)
Observe that \(L(D_m) = \Sigma^* \) or
\(L(D_m) = \emptyset \), and
\(\langle M \rangle \in \mathcal{K} \Leftrightarrow L(D_m) = \Sigma^* \).

\[f(\langle M \rangle) = \langle D_m \rangle. \]
\(\langle M \rangle \in \mathcal{K} \Leftrightarrow \langle D_m \rangle \in \text{ALL}_{TM} \)
Let M_{Σ^*} be the TM that accepts every input word. So $L(M_{\Sigma^*}) = \Sigma^*$.

Define

$$EQ_{TM} = \{(\langle M_1 \rangle, \langle M_2 \rangle) \mid L(M_1) = L(M_2)\}$$

Then observe that

$$\langle M \rangle \in \text{All}_{TM} \iff (\langle M \rangle, \langle M_{\Sigma^*} \rangle) \in EQ_{TM}.$$

Define computable function f by

$$f(\langle M \rangle) = (\langle M \rangle, \langle M_{\Sigma^*} \rangle).$$

Then $\langle M \rangle \in \text{All}_{TM} \iff f(\langle M \rangle) \in EQ_{TM}.$

That is, $\text{All}_{TM} \leq_m EQ_{TM}$.

Therefore, since All_{TM} is undecidable, it follows that EQ_{TM} is undecidable.