A set A is *enumerable* if there is a function $f : \mathbb{N} \rightarrow A$.

In this case A can be written as a sequence: writing a_i for $f(i)$, we have

$$A = \text{range}(f) = \{a_0, a_1, a_2, \ldots\} = \{a_i \mid i \geq 0\}.$$

To say that a set is enumerably is to say that its elements can be counted.
An **enumerator** is a T.M. that uses one tape as an output tape, on which a symbol, once written, can never be changed, and whose tape head never moves left. On the output tape, \(E \) writes strings over some alphabet \(\Sigma \), separated by a marker symbol \#.

\(E \) may write words in any order and may write words more than once.

\[G(E) = \{ w | E \text{ eventually writes } w \text{ between a pair of } \# \text{'s} \} \]

Definition. A set \(L \) is **computably enumerable** iff \(L = G(E) \) for some enumerator \(E \) or \(L = \emptyset \).

Theorem. If \(L \) is \(\Sigma^* \), then \(L \) is Turing-acceptable.

Proof. Given \(L = G(E) \) for some enumerator \(E \). Construct \(M \) to have one more tape than \(E \). Place input \(w \) on this tape. \(M \) simulates \(E \); if \(E \) ever writes \(w \) on its output tape between \#'s, then \(M \) accepts.

\(L = \emptyset \) is an easy case.
Let \(P \) be an enumerator that generates ordered pairs of natural numbers \((i, j)\) in binary in the following order:

1. Generate in order of the sum \(i + j\);
2. Among pairs of equal sum, in order of increasing \(i\).

\((1,1), (1,2), (2,1), (1,3), (2,2), (3,1), \ldots\)

Theorem. If \(L \) is Turing-acceptable, then \(L \) is c.e.

Proof. Let \(L = L(M) \). Construct \(E \) to behave as follows: Simulate \(P \) when \(P \) generates \((i, j)\), then simulate \(M \) on \(w_i \) (the \(i\)-th word in lexicographical order for exactly \(j\) steps. If \(M \) accepts \(w_i \) in \(j\) steps, then write \(w_i \) on the output tape.