How Students “Measure Up”: Creation of an Assessment Instrument for Introductory Computer Science

Adrienne Decker

Dissertation Proposal Defense for the Degree of Doctor of Philosophy

April 29, 2004
Curriculum Through the Ages

- Curriculum ’68, ’78, & ’91
- CC2001
 - Knowledge Areas carried over from Curriculum ’91
 - Distinction of Introductory/Intermediate/Advanced Courses
- Introductory courses:
 - Programming-First
 - Functional-First, Imperative-First, Objects-First
 - Breadth-First
 - Algorithms-First
 - Hardware-First
Problems with Curricula

- CC2001 (and previous) gives topics for coverage, not full course models.
- Implementation in hands of instructor.
- Instructor creates new course materials in effort to satisfy curriculum suggestions.
- How do we know if materials are effective?
The Usual Suspects

- Exam Grades, Assignment Grades, Overall Course Grades
 - Lack important characteristics of reliability and validity
 - Reliability - “degree of consistency among test scores” (Marshall and Hales 1972)
 - Validity - the ability of a test to “reliably measure what is relevant” (Marshall and Hales 1972)
Reliability

- Time-sampling Method
 - Test administered at two different times.

- Parallel-forms Method
 - Two tests are created that are designed to test same content.

- Internal-consistency Method
 - One test split in halves. Both halves are compared.

(Marshall and Hales 1972; Ravid 1994; Kaplan and Saccuzzo 2001)
Validity

- **Face-validity**
 - Does the test seem to ask the right questions?

- **Content-validity**
 - Expert opinion on the contents of the test.

- **Criterion-validity**
 - Test corresponds to a particular criterion.

(Marshall and Hales 1972; Ravid 1994; Kaplan and Saccuzzo 2001)
Motivation

- Predictors for Success?
 - We can find predictors, but what are we using as a measure of success? (Ventura, 2003)

- No such assessment available
 - GRE Subject-Test in Computer Science
 - ETS Major Field Test in Computer Science
 - AP Computer Science Exams (A & AB)
AP Exam Analysis

 - Computer Science A Exam
 - Correlation shown between AP CS A Exam and CSE 115 Letter grade $r_s(49) = .42, p < .01$
 - Computer Science AB Exam
 - No correlation between AP CS AB Exam and CSE 115 Letter grade $r_s = .21, n = 27, p > .05$
Proposed Solution

- Create an assessment for the introductory computer science courses.
 - Language-independent
 - Paradigm-independent
 - Programming-first approach (CC 2001)
 - Reliable
 - Valid
Prior Investigations

- Introductory Curriculum
 - Before CC2001 (and currently) – what is best way to teach introductory CS1?
 - Fincher (1999)
 - Evans (1996)
 - Graphical and/or Event Driven Approaches
 - Guzdial & Soloway (2002)
 - Reges (2000)
 - Paired Programming (Nagappan, Williams et al. 2003)
 - When teaching programming, what paradigm? (Alphonce & Ventura 2003, Culwin 1999)
Prior Investigations

■ Predictors Research
 ■ Pre-CC2001
 ■ Using mainly imperative programming.
 ■ No clear definition of curriculum
 ■ Not validated/reliable metrics
 ■ Missing good measure of success
Prior Investigations

- Non-majors course performance
 - Showed that students taught with Objects-Emphasized approach were better at Object-Oriented Programming in the long run.
 - Assessment through means of exam and resignation rates
 - No reliability or validity
Prior Investigations

- Assessment of Programming Skill for CS1
 - Conference on Innovation and Technology in Computer Science Education (ITiCSE) Working group (McCracken et al. 2001)
 - Created learning objectives for the introductory curriculum
 - Grading rubrics created
 - Math-intensive problems
 - Students lacking basic data structures background would be at a disadvantage.
Proposed Work

- Phase I - Topics, Questions & Grading for Programming-First Approaches
 - Is there an intersection of common topics for all three programming-first approaches?
 - What if there isn’t one?
 - What types of questions should be asked?
 - How should the questions be graded?
Phase I Preliminary Results

- Identified that within programming-first approaches there are nine overlapping knowledge units.
- This set of topics accounts for ~50% of the topic coverage and ~50% of the course contact hours for each of the approaches.
Proposed Work

- Phase II - Survey of CS1 Educators
 - Ask for opinions about topical coverage and grading scheme in an effort to use data in future to establish content validity.
Proposed Work

- Phase III - Analysis of Survey
 - Does the test “measure up”?
 - If not, back to Phase I to reassess the assessment.
Proposed Work

- Phase IV – Field Testing
 - CSE 113/114/115/116 will take the test and their results will be graded using the grading rubric.
Proposed Work

- Phase V – Analysis of Grades, Reliability, and Validity
 - Test for inter-rater consistency
 - Internal consistency
 - Determination of Validity
Contributions & Significance of Proposed Work

- Intersection of Programming-First Introductory CS courses
- Assessment Instrument that can be used to test curricular innovations and/or as a measure of success.