In the last lecture, we studied the Reed-Muller code, $RM_2(t, v)$ and saw the “majority logic decoder” for such codes. In today’s lecture, we will start off with a formal statement of the algorithm and then prove its correctness.

1 Majority Logic Decoding

Below is the formal statement of the majority logic decoding algorithm.

INPUT: $y = \langle y_a \rangle_{a \in \mathbb{F}_2^v}$ such that there exists $P(x_1, \ldots, x_v)$ of degree at most t with $\Delta(y, \langle P(a) \rangle_{a \in \mathbb{F}_2^v}) < 2^{r-t-1}$.

OUTPUT: Compute $P(x_1, \ldots, x_r)$

1. $P \equiv 0$, $r \leftarrow t$

2. (a) For all $S \subseteq [v]$, such that $|S| = t$, set C_S to be the majority over $b \in \mathbb{F}_{2^{v-t}}$ of $\sum_{a \in \mathbb{F}_2^v, a_S = b} y_a$. Set $P \leftarrow P + C_S \prod_{j \in S} x_j$

 (b) For all $a \in \mathbb{F}_2^v$, $y_a \leftarrow y_a - \sum_{S \subseteq [v], |S| = t} C_S \prod_{j \in S} a_j$

3. $r \leftarrow r - 1$

4. If $r < 0$ output P, else go to step 2.

Note that this is an $O(n^3t)$ algorithm, where $n = 2^v$. This is true because the number of iterations in step 2 (a) is at most $\binom{v}{t} \leq n$, and computing the majority in that step takes time $O(n^2)$. Finally, step 2 is repeated at most t times.

2 Correctness of the algorithm

We need one further result to prove the correctness of the majority logic decoder, namely the lemma from the last lecture.

Lemma 2.1. For all $t \geq 0$ and $S \subseteq [v]$ such that $|S| = t$, any v-variate polynomial P of degree at most t, for every $b \in \mathbb{F}_{2^{v-t}}$, has $\sum_{a \in \mathbb{F}_2^v, a_S = b} P(a) = C_S$.

At this point, we need a new notation. Given a subset S of $[v]$, define

$$R_S(x_1, x_2, \ldots, x_v) \triangleq \prod_{j \in S} x_j.$$

We will need the following two observations.

Observation 2.2. For all $S \subseteq [v]$ and $T \subset S$, for all $b \in \mathbb{F}_2^{v-|S|}$, \[\sum_{a \in \mathbb{F}_2^v, a_S = b} R_T(a) = 0.\]

Observation 2.3. For all $S \subseteq [v]$ and $b \in \mathbb{F}_2^{v-|S|}$, \[\sum_{a \in \mathbb{F}_2^v, a_S = b} R_S(a) = 1.\]

Subject to the proof of these two observations (which we will do later), we are now ready to prove Lemma 2.1.

Proof of Lemma 2.1 Let P_b denote the polynomial obtained from P by substituting the variables \(\{x_i | i \notin S\}\) according to b. P_b now only has monomials of the form $R_Y(x_1, x_2, \ldots, x_v)$ for $Y \subseteq S$. In other words, $P_b(x_1, \ldots, x_v) = C_SR_{S}(x_1, \ldots, x_v) + \sum_{T \subset S} C'_T R_T(x_1, \ldots, x_v).$

The definition of P_b and the above relation implies the following:

$$\sum_{a \in \mathbb{F}_2^v, a_S = b} P(a) = \sum_{a \in \mathbb{F}_2^v, a_S = b} P_b(a) = C_S \sum_{a \in \mathbb{F}_2^v, a_S = b} R_S(a) + \sum_{T \subset S} C'_T \sum_{a \in \mathbb{F}_2^v, a_S = b} R_T(a) = C_S,$$

where the last equality follows from Observations 2.3 and 2.2.

This proves Lemma 2.1. We still must prove the two observations, first, Observation 2.2.

Proof of Observation 2.2 Consider the sum $\sum_{a \in \mathbb{F}_2^v, a_S = b} R_T(a)$. Fix some $i \in S \setminus T$. We can divide this into the sum of two parts: $\sum_{a \in \mathbb{F}_2^v, a_S = b, a_i = 0} R_T(a) + \sum_{a \in \mathbb{F}_2^v, a_S = b, a_i = 1} R_T(a)$. Since $R_T(x)$ does not depend on x_i, the two parts are equal, and the sum is zero since it is computed over \mathbb{F}_2.

We now move to the proof of Observation 2.3.

Proof of Observation 2.3 Note that $R_S(a) = 1$ if and only if for all $i \in S$, $a_i = 1$. Notice that this is true for exactly one value in \(\{a \in \mathbb{F}_2^v | a_S = b\}\).

3 Construction of explicit binary asymptotically good codes

We now return to the question of explicit binary codes with both R and δ greater than zero. Recall that the Reed-Muller codes give us $R = \frac{1}{2}$ and $\delta = \frac{1}{\sqrt{n}}$, which falls short of this goal. The Reed-Solomon code, as a binary code, comes closer - it gives us the same rate, and $\delta = \frac{1}{\log n}$, as we discuss next.
Consider the Reed-Solomon over \mathbb{F}_{2^s} for some large enough s. It is possible to get a code with (e.g.) a rate of $\frac{1}{2}$, and have an $[n, \frac{n}{2}, \frac{n}{2} + 1]_2$ code. We now consider a Reed-Solomon codeword, where every symbol in \mathbb{F}_{2^s} is represented by an s-bit vector. Now, the “obvious” binary code created by viewing symbols from \mathbb{F}_{2^s} as bit vectors as above is an $[ns, \frac{ns}{2}, \frac{n}{2} + 1]_2$ code. Note that the distance of this code is only $\Theta\left(\frac{N}{\log N}\right)$, where $N = ns$ is the block length of the final binary code. Recall that $n = 2^s$ and so $N = n \log n$.

The reason for the poor distance is that the bit vectors corresponding to two different symbols in \mathbb{F}_{2^s} may only differ by one bit. Thus, d positions which have different \mathbb{F}_{2^s} symbols might result in a distance of only d as bit vectors.

To fix this problem, we can consider applying a function to the bit-vectors to increase the distance between those bit-vectors that differ in smaller numbers of bits. Note that such a function is simply a code, and Forney introduced this idea of “concatenating” in 1966.

More formally, consider a conversion function that maps $\mathbb{F}_{2^s} \to (\mathbb{F}_2)^{s'}$ in such a fashion that, even if $\Delta(x, y) = 1$, $\Delta(f(x), f(y)) \geq d'$. If we find such a function, we can construct a code with $R > 0, \delta > 0$ as long as the “inner distance”, d', is $\Omega(s')$. In the next lecture, we will formally define code concatenation and consider the problem of finding good inner codes.