1 Introduction

In the last lecture, we introduced and discussed about BCH codes. In today’s lecture, we digress a little bit and talk about the notion of \(l\)-wise independent sources (these are generally called \(k\)-wise independent sources, but for us \(k\) is already taken).

Definition 1.1 (\(l\)-wise independent random variables). \(X_1, X_2, \ldots, X_n \in \{0, 1\}\) are \(l\)-wise independent (for \(l \geq 1\)) if \(\forall \{i_1, \ldots, i_l\} \subseteq [n]\) and \((a_1, \ldots, a_l) \in \{0, 1\}^l\), the probability \(\Pr[\land_{j=1}^{l} X_{i_j} = a_j]\) equals \(2^{-l}\) where \((X_{i_1}, \ldots, X_{i_l}) \in \{0, 1\}^l\).

2 \(l\)-wise independent sources

Definition 2.1 (\(l\)-wise independent sources). \(S \subseteq \{0, 1\}^n\) is an \(l\)-wise independent source if for a uniformly chosen random \((X_1, \ldots, X_n) \in S\), \(X_1, \ldots, X_n\) are \(l\)-wise independent random variables. In other words, each \(v \in \{0, 1\}^l\) occurs \(\frac{|S|}{2^l}\) times. Example of an \(n\)-wise independent source is \(\{0, 1\}^n\).

Proposition 2.2. An \(n\)-wise independent source is also an \(l\)-wise independent source. In other words, \((l + 1)\) wise independence implies \(l\)-wise independence.

3 Application of \(l\)-wise independence

In this section, we illustrate an application of \(l\)-wise independence. We discuss the MAX3ESAT (or in general the MAX/ESAT) problem.

Definition 3.1 (MAX3(l)ESAT). We are given clauses \(C_1, \ldots, C_m\) such that each \(C_i\) where \(1 \leq i \leq m\) has exactly \(3(l)\) distinct literals. Example, \(C_i = X_{i_1} \lor X_{i_2} \lor X_{i_3}\). The goal is to find an assignment that satisfies as many clauses as possible. This problem is known to be NP-Hard.

Since the above problem is known to be NP-Hard we resort to approximate (in other words, the best possible) solutions to the same. This motivates the following definition
Definition 3.2 (α-approx algorithm). For any α where $0 \leq \alpha \leq 1$, an algorithm that always satisfies greater than or equal to α-fraction of the maximum number of satisfiable clauses is an α-approx algorithm for MAX3ESAT (It is to be noted that 1-approx is NP-Hard for any l greater than or equal to 2).

Question: So what is the largest α-approx that can be achieved?

A $\frac{7}{8}$-approx algorithm for MAX3ESAT. In general, $(1 - 2^{-l})$-approx algorithm for MAX/ESAT.

Observation: For each i, pick $X_i = 0$ with probability $\frac{1}{2}$ independently. For a fixed i (where $1 \leq i \leq m$), the probability that a clause is satisfied is given by

$$Pr[C_i \text{ is satisfied}] = \frac{7}{8} \text{ (for 3-wise independent random variables)}$$

By linearity of expectation (where the expectation is over the choice of random variables), the expected number of satisfied clauses equals $\frac{7m}{8}$. This implies that there exists an assignment that satisfies greater than or equal to $\frac{7m}{8}$ fraction of the clauses. Note that for a clause $C_i = X_{i_1} \lor \overline{X_{i_2}} \lor X_{i_3}$, the choices for $X_{i_1}, X_{i_2}, X_{i_3}$ need to be independent. For this, the solution is to pick a random assignment from an l-wise independent source.

In the next lecture, we will see that the dual of the $BCH_{2,\log n,l+1}$ is an l-wise independent source. By the bounds on the dimension of these codes, this means that there exists an l-wise independent source of size $O(n^{l/2})$ (For example, $O(n)$ size for 3-wise independence). Further, as these codes are linear codes, each codeword can be generated in time $O(n^2)$. This implies that we have an $1 - 2^{-l}$ approximation algorithm for MAX/ESAT that runs in time $O(n^{2 + \frac{l}{2}})$.

2