In the last lecture we examined explicit linear codes that achieve BSC_p capacity, polynomial time decoding and exponentially small decoding error probability. We saw decoding time:

$$poly(N) + N \cdot 2^{O(k)}$$

where $k = \theta\left(\frac{\log \frac{1}{\varepsilon}}{\varepsilon^2}\right)$ and $\gamma = \varepsilon^3$

A question to motivate this lecture is whether we can achieve BSC_p capacity with $poly(N, \frac{1}{\varepsilon})$ decoding. The answer is still open.

In this lecture we will examine if we can achieve BEC_α capacity with $N \cdot poly(\frac{1}{\varepsilon})$ decoding.

Theorem 1. For small enough $\beta > 0$, there exist an explicit binary linear code of rate $\frac{1}{1+\beta}$, and can correct $\Omega(\frac{\beta^2}{(\log \frac{1}{\beta})^2})$ fraction of worst-case errors with $O(N)$ encoding and decoding.

These codes are called *expander codes*. Note that they are optimal in running time (linear). Using expander codes is the only other way to get asymptotically good binary codes besides code concatenation.

1 Factor Graphs (for linear binary codes)

We examine a $[n, k]_2$-code C.
The factor graph for C is the bipartite graph corresponding to C’s parity check matrix (when thought of as an adjacency matrix).

As an example we regard the $[7, 4]_2$-Hamming code:

$$H_{HAM} = \begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{pmatrix}
\begin{aligned}
\quad p_1 \\
p_2 \\
p_3 \\
\end{aligned}
\begin{array}{ccccccc}
c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 \\
\end{array}
$$

The parity check matrix is displayed as a factor graph in figure 1. In the parity check matrix the columns are named c_1 to c_7 and the rows are named p_1 to p_3. For a given row and column in the matrix, if there is a 1 then there is a line between the row and column points in the graph.
Note that the parity check is done by calculating
\[\sum_{i=1}^{l} c_{j_i} = 0 \quad (\text{over } \mathbb{F}_2). \]

In other words, if the parities sum to zero then the given symbol’s parity checks out. In a factor graph this can be illustrated as figure 2. So to check the parity of an entire codeword we have that all the parities must sum to zero:

\[(c_1, ..., c_n) \in C \iff \forall p_j, \sum_{i=1}^{l} c_{j_i} = 0 \]

1.1 Linear Density Parity Check (LDPC) codes

A LDPC code is a linear binary code whose factor graph has \(O(n) \) edges, where the maximum possible amount for any factor graph is \(O(n(n - k)) \).

2 Expander Codes

Expander codes are a specific form of general expanders. Factor graphs as we previously examined is another kind of ”expander”.

See figure [2] for a graphical example of an expander graph. Every element \(c \) on the left has exactly \(a \) number of neighbors on the right

\[\forall v \in L, \text{deg}(v) = a. \]
Figure 2: Example of single parity check.

Figure 3: Expander as a factor graph.
So the number of elements in $N(S)$ is at most a times the length of S. Now, the factor graph is only said to be an expander if the number of elements in $N(S)$ is at least as high as the number of elements in S:

$$\Omega(|S|) \leq |N(S)|.$$

Definition 1. A (n, m, a, β, α)-expander is an (L, R, E) left a-regular bipartite graph such that for all $S \subseteq L$, $|S| \leq \beta \cdot n$, $|N(S)| \geq \alpha \cdot |S|$.

For all expanders we have

$$\alpha \leq a$$

and

$$a\beta n \leq m.$$

A special kind of expander is a loss less expanders, for which it holds

$$\alpha \geq a(1 - \varepsilon), \varepsilon > 0.$$

In other words, with a loss less expander α is very close to a.

Theorem 2. (Existence) $\forall \varepsilon > 0, m \leq n, \exists \beta > 0$ such that there is an $(n, m, a, \beta, a(1 - \varepsilon))$-expander for which it holds $a = \theta\left(\log \frac{2n}{\varepsilon}\right), \beta = \theta\left(\frac{\varepsilon}{a} \cdot \frac{m}{n}\right)$.

By probabilistic method as well as knowing that $0 < \frac{n}{m} < 1, \varepsilon = \theta(1)$ we see that a is in the order of $\frac{1}{\varepsilon}$ and β is in the order of ε^2:

$$a = \theta\left(\frac{1}{\varepsilon}\right)$$

$$\beta = \theta(\varepsilon^2)$$

Theorem 3. For $0 < \frac{m}{n} < 1, \varepsilon = \theta(1)$, there exist a polynomial time construction of $(n, m, O(1), \Omega(1), a(1 - \varepsilon))$-expander.