CSE421 Introduction to Operating System
Spring 2007
Project #2
Multi-Threaded(MT) Programming: Communication and Synchronization
Bina Ramamurthy
February 18, 2007

1 Objective
To familiarize the students with:

- Thread creation and control (exit, join, termination, and synchronization).
- Designing and implementing a multi-threaded application.

2 Problem Statement

1. (25 points) Sleeping Barber problem Implement a solution to the sleeping barber problem. Implement the solution using synchronization primitives (pthread_mutex_t for mutual exclusion) provided by the POSIX threads. Your implementation will consist of a control program that (i) initializes the synchronization variables and (ii) creates and terminates the threads for the customer and the barber. Print appropriate message to indicate the events happening. (It is possible messages may be appearing out of order, so prefix the messages with some order related numeral.) Let the control program simulate all possible conditions: Chairs (n) free, chairs full, barber sleeping, customer leaving, customer waiting. Update the basic single barber implementation to multiple barber implementation. Also simulate the single barber version by placing signal from customer to barber (“CtoB”) out of the critical region, after the mutex. Observe and note what happens.

2. (25 points) Thread Scheduling Write a scheduler for user level threads that works on round robin policy. A controller (factory) creates as many threads as required, it employs a timer that interrupts the scheduler at predetermined intervals to switch the currently running thread to a thread in front of a waiting queue. Parameters such as time interval and execution time for the scheduled thread have to be passed into a controller that coordinates the scheduler and a timer that maintains the intervals.

3. (20 points) Realtime scheduling I Modify the simple round robin sceduling policy in the last section to accomodate deadline based scheduling for a set of threads representing periodic tasks.Use earliest deadline first policy. Show at least one data set for which your scheduler is succesful and one where it fails (misses deadline).

4. (20 points) Realtime scheduling II Repeat the last problem with priority based scheduling where shortest period gets the highest priority. Record your obervations in a document.
3 Material to be Submitted

1. Submit the source code for the programs. Use meaningful names for the file so that the contents of the file is obvious from the name. You may zip all the source files into a single file. Also provide a Pr2README file that explains the contents of the zip file. Pr2README file should have an observation section for each of the four problem. Use tables wherever suitable (10 points for documentation).

2. Use internal documentation to explain your design.

3. Test runs: It is very important that you show that your program works for all possible inputs. Submit a single script that shows for each program the working for correct input as well as graceful exit on error input.

4. Submit your makefile.

4 Due date

3/24 submit on-line before mid-night.