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Abstract—In this paper, we collect and analyze data from 85
smartphone users over a 9 month period. Different from existing
work, we study device usage patterns in concert with network
performance in space and time. Our results uncover predictable
mobility patterns, where users are moving between hubs (i.e.,
home or workplace) and transit locations. In hubs, users are
typically connected using Wi-Fi, while in transit locations cellular
connectivity dominates with highly varying performance (from
EDGE to HSPA+). Interestingly, there are set of apps over time
running on user devices, independent of the location, network
conditions, and device resources (e.g., battery level). These apps
can aggressively use the network, which leads to significant device
resource consumption (e.g., energy), as shown by our controlled
experiments. We discuss how our findings can be used to budget
mobile device available resources and improve user experience.

I. INTRODUCTION

The use of mobile devices, such as smartphones and
tablets, is steadily increasing and it is predicted that the
traffic from wireless and mobile devices will account for
61% of the IP traffic by 2018 [1]. Despite the increasing
popularity of mobile devices, mobile user habits, mobile device
usage patterns, network performance, and their spatio-temporal
relationships, which together determine user experience, still
remain largely unexplored. In this paper, we seek to fill this
gap by collecting and analyzing traces from 85 smartphone
users (volunteers) over a 9 month period. To this end, we
implement CellOScope [2], an Android application which
periodically collects location and device usage information
(running applications, traffic etc.), and instruments network
measurements to determine network performance (throughput).
This is different from existing studies which mainly collect and
analyze either network performance data (e.g., [3]) or device
usage patterns (e.g., [4], [S]) but not both.

We first investigate the mobility patterns of the users in
our dataset. We classify a user’s locations into hubs and transit
locations, according to the frequency of visits and the duration
that a user spends at a certain location. A hub is typically
their home or workplace, which the user visits often and stays
for a long time. Our results show that we can often predict
with certain accuracy the times at which a user will be at a
hub location. Our network performance analysis further shows

that Wi-Fi is typically used at hub locations and provides on
average 50.9% higher throughput than cellular.

We then look at the applications used at the two types
of locations. Interestingly, our trace shows that smartphone
users typically use almost the same set of applications at both
hubs and transit locations. Twitter, Facebook, and Email are
among the most popular applications used by the users in
our dataset. These applications generate significant network
activity, attributed to periodic syncs. These periodic syncs can
run even in the background irrespective of whether the user is
actively using the application or not. Such background network
activity leads to significant energy consumption as shown
by our controlled experiments. Half an hour of Twitter and
Facebook sync operation over a cellular network can reduce
a typical smartphone’s standby time by 3 hrs and 1.5 hrs
respectively. Based on our findings, we propose the design
of a user profile-based resource budgeting system in mobile
devices, which can defer delay-tolerant applications and/or
operations (such as periodic syncs), until more network or
device resources (e.g., a better network or a power plug) are
available.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the implementation
of CellOScope and an overview of our dataset. Sections IV
and V investigate user mobility and network performance,
respectively. Section VI studies user applications and their
impact on energy consumption. Finally, Section VII discusses
a user profile-based resource budgeting design in smartphones
and concludes the paper.

II. RELATED WORK

Considerable work has been done in the past towards
developing user-specific solutions to contain resource wastage
in smartphones. Building user profiles by identifying patterns
in user data is shown to be an effective option [6]. To this
extent, our work is complementary to many other works [3],
[5], [7], [8], [9], [10], [11], [12]. The novel contribution of our
work is the study of device usage and network performance
of a diverse set of smartphone users in concert with their be-
havior (mobility). We believe that our approach of combining



network, device usage, and user behavior allows us to build a
more credible and strong user profile framework that can be
used for smartphone resource budgeting schemes.

Researchers in [5], [8] use only the phone usage patterns
to build user profiles to estimate rate of battery drain. Such
estimates, which do not consider network performance, will
often be incorrect. As we show in Section VI, energy drain
in smartphones for a given application varies with different
networks and hence, involving network performance in user
profiles is important.

On the other hand, studies that consider the available
network patterns [3], [9], [10], [11] fail to take into account
the user phone usage preferences. The potential drawback is
that this may cause them to miss out on prioritizing the data
transfers or at times even allow background applications to
transfer wasteful data that the user rarely needs. This may fur-
ther aggravate both energy consumption and user experience.

Finally, works which study both the application and the
network performance of various smartphone users [4], [12],
[13] analyze the problem from the network perspective and
not from the user’s perspective.

III. DATA COLLECTION

Collecting reliable data from smartphone users in real
time is a major challenge due to a number of reasons. Users
are reluctant to share their data due to privacy and security,
as well as energy concerns. In the past, researchers have
studied different ways of collecting user data [14]. Conducting
surveys/asking participants about their behavior is one of the
most popular practices. However, such surveyed data is often
unreliable and incorrect [14]. Another popular method is by
installing a custom application on user’s smartphone. This
method provides more flexibility in monitoring the user’s
phone activities reliably but it comes at a cost. Any custom
application which monitors user activities has to run con-
tinuously in the background thus depleting the user’s phone
battery. Additionally any active measurements involving send-
ing/receiving data over cellular networks can eat up a huge
chunk of the users data budget. Thus, finding a right balance
between data collection and user preferences is always crucial.

For our data collection, we used CellOScope — a smart-
phone data-collection system. CellOScope has two compo-
nents: a) an Android based smartphone app which was installed
on participants’ smartphones manually and was also made
available on google play for download and b) a data collection
server. CellOScope' data collection involves three important
components of the user’s smartphone data:

e Location: The CellOScope application tracks the
user’s geographical locations using the GPS coordi-
nates. In case the GPS coordinates are unavailable, it
uses the location coordinates provided by the cellular
operator.

e  Network: CellOScope conducts periodic active/passive
monitoring of the user’s network activities. Passive

ICellOScope users have agreed to all our terms and conditions and due
legal process was followed in collecting sensitive information.

TABLE 1. Overview of the dataset.

Collection dates 02-21-2013 - 11-30-2013
Number of users 85
Location of sampled users Paris, Fr
Sampling frequency 1 hr or 15 min
Avg. #of samples per user 362
Types of networks sampled Wi-Fi, HSDPA, HSPA, HSPA+, EDGE, GPRS

monitoring involves tracking the user’s network pref-
erences (Wi-Fi/cellular) and recording the available
cellular networks. During active monitoring, Cel-
10Scope measures the downlink HTTP throughput
by sending 100KB of HTTP data from our servers
to the user’s phone over the network the phone is
currently connected to. This helps us record the HTTP
throughput performance at different times over differ-
ent networks.

e  Applications: The third component of data collec-
tion involves user’s applications usage patterns. Cel-
10Scope tracks the active/running applications on the
user’s smartphone. Data counters record the data
sent/received in bytes for each application since the
last reading was taken for that application. This helps
us analyze various patterns in user’s smartphone us-
age and also identify rogue applications involved in
unusually high data transfers.

A. Challenges and Limitations

The most important challenge in data collection is to
encourage the users in sharing their data. To incentivize the
users, the application provides useful information about the
user’s network performance, as well as location and mobility
patterns using Google Maps. In order to avoid excessive usage
of the phone’s battery, we stop sampling during night when the
user is most likely to be at home. The sampling frequency of
CellOScope was set to 1 hr by default and for users who agreed
to higher sampling frequency it was set to 15 min.

Out of the total 85 users in our dataset, 15 users have
continuous data for days ranging from 3 weeks to 7 months.
For the rest of the users, we have discontinuous data samples
ranging from 2 to 100 days and spread over 9 months. The
main reason for this is that CellOScope stops sampling when
the (monthly) cellular data usage of CellOScope crosses the
user set threshold. Table I gives some additional specifics of
the dataset we collected over 9 months.

IV. UNDERSTANDING USER’S MOBILITY

In order to predict spatial device usage patterns, we first
try to understand user mobility. To identify patterns in user
mobility, we classify user locations as: a) hubs and b) transit
locations. The intuition behind this classification is to identify
locations where a user visits frequently and stays for a long
time. For example, a user’s home and workplace can be
classified as hubs. When the user is at a hub, we assume
that she can recharge her phone, and thus would not worry
about wasting the phone’s battery. On the other hand, transit
locations are those which a user rarely visits for a brief
duration and may or may not find charging opportunities.
These transit locations can be places which the user visits



TABLE II. Hubs and transit locations for different values of .
[ o [ Avg. Hubs | Avg. Transit |
0.20 1.07 25.2
0.15 1.32 25.0
0.10 1.61 24.7
0.05 222 24.1
0.01 5.76 20.6

during her commute between hubs. When the user is at a transit
location, she may want to conserve her phone’s resources like
battery, and cellular data. To classify a location as a hub or
a transit location, we consider two parameters: Frequency and
Duration. They are calculated as follows:

No. of days user visits a location

F =
requency Total no. Of Sampling days

Hours user spends at a location each day

Duration Total sampling hours per day

The frequency represents the user regularity in visiting a
particular location. The duration represents the fraction of time
spent by a user at a particular location each day. The parameter
duration is calculated per day and Avg. duration gives the
average time spent by the user at a location each day. We
then calculate the Location Popularity (LP) for every location
visited by a user as:

LP = Frequency * Avg.Duration

We categorize a location as a hub if LP > a, and as
a transit location if LP < « where o is an adjustable
parameter. Table II shows the average number of hubs and
transit locations for all users. For the remaining of the paper,
we select o = 0.05, since we consider that a typical user is
most likely to have two hubs (home and workplace).

To investigate the possibility of predicting a user to be
at a hub or a transit location at any given time of the day,
we consider the 15 users for whom we have continuous data
samples for over 3 weeks. The continuous data for these users
help us track user mobility with greater certainty. For our
analysis, we separately consider weekdays and weekends in
order to investigate if the user mobility patterns change during
these two time periods. Figures 1 and 2 show the probability
heatmap during weekdays and weekends, respectively. The
grey scale indicates the probability that the user is at a hub at
a particular hour. A fully white block indicates a probability
of 1 for a user to be at a hub and a fully black block indicates
a probability of 0 (i.e., the user is at a transit location).

The heatmaps show diversity among columns, which sug-
gests that individual users exhibit different behavior. This
suggests that adaptation of services given a user’s spatio-
temporal profile can benefit from personalization. Very light
colors (white/light-grey) and very dark colors (black/dark-
grey) indicate that we can predict whether or not a user is
at a hub with high certainty. We observe that several users
have monotonous mobility habits, as there are clearly such
patterns at certain times of the day. For example, user 11 is
almost always at a hub in the mornings, while user 6 is almost
always in transit during weekday morning hours. On the other
hand, for some users the probability is somewhere around 0.5
for certain time periods. This makes it challenging to predict
the user’s location with greater probability. However, for most

of the users we see that it is possible to predict their location
at a given hour with greater certainty with either probability
> 0.8 or probability < 0.3. By comparing the weekday and
weekend heat maps, we can see that the pattern changes for
many users. While user 11 reinforces the probability of staying
at a hub all day long, we have less certainty about the location
of user 6 as compared to weekdays. Overall, it seems slightly
easier to predict user’s presence at hubs during the weekends.
This may suggest that user mobility is more predictable during
weekends than during weekdays.

V. NETWORK PERFORMANCE

In this section we analyze a) network preference of users
at hub and transit locations and b) performance of Wi-Fi and
cellular networks.

Figure 3 shows the average usage time of a particular
network when users are at hub and transit locations. We see
that when users are at a hub, Wi-Fi is the most preferred
network option. On average, users connect to Wi-Fi for over
75% of the duration they are at hubs and use cellular networks
for the remaining duration. On the other hand, when users
are at transit locations they tend to use the cellular network
most of the time. The cellular connectivity at transit locations
can vary from EDGE, GPRS to 3.5G (HSPA+)?. Interestingly,
users connect to low speed cellular networks like EDGE, and
UMTS for little more than 20% of the duration they spend at
transit locations.

Next, we investigate the throughput performance of Wi-
Fi and cellular networks. Figure 4 shows the results of our
HTTP throughput measurements. We show the throughput
recorded for downloading 1000KB over Wi-Fi and cellular
network at hub and transit locations. Clearly, Wi-Fi provides
better HTTP downlink throughput than the cellular network at
both hubs and transit locations. In the median case, the Wi-Fi
HTTP throughput at hubs and transit locations is 4.46Mbps
and 2.7Mbps, respectively, and the cellular HTTP throughput
is 2.21Mbps and 0.8Mbps, respectively. Wi-Fi at hubs offers
much better throughputs when compared to the throughputs
of cellular networks. Figure 5 further breaks down the HTTP
throughput offered by each type of cellular network. The
Wi-Fi HTTP throughput is included for comparison. In the
median case, even the high speed cellular networks — HSPA
and HSDPA - offer throughput 88% and 62% lower than the
throughput offered by Wi-Fi.

VI. APPLICATIONS

In this section, we investigate the user’s application usage
patterns at hubs and transit locations. In order to understand
what applications are popular at hubs and transit locations, we
introduce a simple metric called Application Popularity (AP).
The AP is calculated as:

# Samples of an app running at hub or transit

Total no. of samples at hub or transit

Table III lists some of the most popular applications at hubs
and transit locations among all users along with their popular-
ity. We notice that gaming and music applications have a rela-
tively high popularity at transit locations as compared to hubs.

2 At the time of data collection none of the operators in Paris offered LTE
connectivity.
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TABLE III. POPULAR APPS IN HUBS/TRANSIT.
App type App name App App
Popularity Popularity
in Hubs in Transit
[ Email [ 042 [ 048 ]
’ Network [Browser | 054 [ 056 |
[ Twitter [0.71 [ 0.76 ]
Social Network | Facebook [ 042 [ 045 |
[ Location [ Google Maps [ 0.22 [ 0.29 |
Games [ Sudoku [ 040 [0.77 ]
[ Candy Crush | 0.10 [033 |
[ System [ Music Player [ 0.18 [ 052 |

In contrast, other popular applications appear location agnostic
exhibiting similar popularity at both hubs and transit locations.
The reason for such a behavior is that these applications require
constant synchronization with their servers to receive periodic
updates and hence, they run in the background irrespective
of whether the user is actually using the application or not.
Similar observations were made in [15] for social networking
applications like Facebook.

The sync applications, which periodically schedule data
exchanges irrespective of the available network conditions, can
have serious implications on the phone’s resources. In order
to quantify the impact of periodic data exchange by sync
applications on the phone’s resources, we first examine the
bytes downloaded by the most popular sync applications across
all users in our dataset. The graphs in Figures 6-9 show the
data (per hour) exchanged by social networking, maps, email,
and browser applications for every user. We see that the social
networking applications are the most aggressive in exchanging
data. For the median user, the social networking applications
exchange 145KB of data on average per hour while maps,
email, and browser applications exchange only 16KB, 16KB,
and 32KB of data, respectively.

cellular networks.

The next important question is to understand the impact
of these periodic data transfers on the phone’s battery life.
To answer this question, we conducted a few controlled
experiments on a case study user.

A. Controlled Experiments

In order to understand the impact of periodic data transfers
which usually run in the background by different sync-enabled
applications on the energy consumption of a smartphone, we
selected a case study user from our dataset and tried to emulate
the periodic data syncs under various network conditions that
are similar to the network conditions which the case study
user experienced at hubs and transit locations. The idea behind
this experiment is to obtain an estimate on how different
network conditions impact the energy drain in smartphones
during periodic syncs.

For this experiment, we selected the 3 most popular appli-
cations (Twitter, Facebook, and Google Maps) which require
periodic syncs and usually run in the background irrespective
of whether the user is likely to use them or not. As we show
in our experiments below, these applications are ignorant of
the available network conditions and schedule data exchange
periodically.

1) Experiment Methodology: We used the Samsung Galaxy
S4 smartphone to conduct this experiment. We ran the 3
applications serially in the background with the screen off. We
measured the energy using the Monsoon power monitor [16].
We set the application sync settings similar to what the case
study user used during data collection. For Facebook, the
periodic sync duration was set to 30 min and for Twitter it
was set to 5 min. For Google Maps, users do not have an
option to set the sync-duration. We allowed each application
to run in the background for 30 min so as to ensure that all
three applications had a chance to sync at least once during
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the experiment period. Figures 10 and 11 show the mean and
standard deviation of Wi-Fi and cellular energy measured for
the three applications over 5 trials. The Wi-Fi network setting
emulates the condition when the case study user is at a hub
and the cellular network setting emulates the conditions when
case study user is at a transit location.

2) Analysis: We first analyze the energy consumption of
the background syncs of the social networking applications
— Twitter and Facebook with HSPA+ and EDGE cellular
networks. This is the energy the case-study user is most likely
to incur at transit locations. As shown in 11 when the user sets
5 min sync period, the mean energy consumed in 30 min by
Twitter was 160J over HSPA+ network and 100J over EDGE
network. The Facebook sync operation is not as aggressive as
Twitter. Yet, the energy consumed by Facebook in 30 min is
still high, 70J and 54J over HSPA+ and EDGE respectively. In
contrast, the energy incurred for the same duration when the
phone was in standby mode (connected to the cellular network,
but with no active sync) is just 24J. This means that 30 min
of Twitter sync operation over HSPA+ and EDGE networks
would reduce the phone’s standby time by 3 hrs and 2 hrs
respectively, while a single Facebook sync operation would
bring down the phone’s standby time by 1.5 hrs and 1 hr
respectively.

Next we analyze the energy consumption for Twitter and
Facebook sync operations over Wi-Fi. To emulate extremes in
Wi-Fi signal quality which the user is most likely to witness
at hubs, we conduct the experiment with high (-45dBm) and
low signal strengths (-85dBm). The total energy cost incurred
for the Twitter sync was 82% and 72% lower than the energy
cost over HSPA+ and EDGE networks, respectively. Similarly,
the total energy cost for the Facebook sync over Wi-Fi was
78% and 70% lower than the energy cost over HSPA+ and
EDGE networks, respectively. From the user’s perspective,
enabling sync operations during her stay at a hub over Wi-
Fi is more energy efficient than running these syncs at transit
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locations over a cellular network. Surprisingly, we do not see
significant difference in the energy consumption for the Twitter
and Facebook sync operations under good and poor Wi-Fi
conditions. This observation is in contrast to the claims made
in [17] where authors show high energy consumption for Wi-
Fi transfers during low signal strength. This is because the idle
energy dominates the energy consumed during the actual sync
and hence there is little difference in the total energy consumed
during good and poor Wi-Fi conditions.

We now look at location applications like Google Maps.
For location applications, users can opt between GPS based
location and the default option of location provided by the
network provider. Our experiment reveals that for either of
the options Google Maps consumes roughly the same energy.
This makes us believe that the energy incurred is actually to
run the application. In fact, the energy consumed for running
Google Maps for 30 min is higher than the energy consumed
by running Facebook sync operation over Wi-Fi for the same
duration.

We now briefly analyze the possible reasons for the dif-
ference in energy consumption for application sync-operations
under HSPA+, EDGE, and Wi-Fi networks. The low energy
consumption by Wi-Fi as compared to the cellular networks
is due to the difference in tail energy. The graphs in fig-
ures 12, 13, and 14 show the duration of tail for a single
Twitter sync operation over HSPA+, EDGE, and Wi-Fi. We
observe a prolonged tail of over 10 sec for HSPA+ and over
3 sec for EDGE; in contrast, there is no tail for Wi-Fi. The
longer the tail the higher is the energy consumption. This is
in accordance with the previously observed results in [18].

The important take away point is that many popular appli-
cations exhibit significant background activity and exchange
data periodically. This can lead to significant energy con-
sumption which varies with the network type and is almost
independent of the signal strength. Furthermore, background
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syncs run irrespective of the available resources like battery
and network type.

VII. DiscUSSION AND CONCLUSION

In this paper, we collected and analyzed user behavior
(mobility), network performance, and device usage data from
a set of 85 smartphone users. Our study uncovers significant
resource (energy) consumption from background applications
and sync operations, which run independently of the available
mobile device resources and the network conditions. Our
results motivate the design of user-profile based resource
budgeting in mobile devices.

A profile-based resource budgeting design includes three
key building blocks: a) A mobility tracker which can predict
when a user will be located at hubs or transit locations. Our
results show that this prediction is possible with a certain
confidence. b) A network and device monitor which can
profile the connected network types and the available device
resources (e.g., battery) at hubs and transit locations. ¢) An
application monitor which profiles the running apps and feeds
a resource budget module which can defer execution of power
hungry/delay-tolerant applications based on the available de-
vice resources. We have implemented the mobility tracker, the
network and device monitor, and the application monitor in
CellOScope (Section III). To construct the user profile in an en-
ergy efficient manner, it is important to collect user feedback at
coarse time scales and avoid using any power hungry sensors.
Apart from the above modules, the resource budgeting design
should be able to predict the resource (energy) consumption
by applications until the user reaches a hub.

A similar solution was proposed by [8] for resource
budgeting in smartphones. The authors used user profiles to
maximize the telephony talk time by postponing sync activities
of different applications. They used past call records as input to
make decisions. However, with advancements in smartphones
such decision process may not be that simple, as there can
be many other dependencies. For example, many VOIP/video
applications which are popularly used as an alternative to
telephony services depend on the available network. Addi-
tionally, many of these applications use inherent sensors that
may cause further energy drain. In order to have an effective
decision process, it is important to understand the available
resources and their usage in greater depth. We leave the
resource budgeting design and implementation as a future
work. Overall, we consider our work to be an important step
towards understanding the mobile user, and designing user
profile-based resource budgeting on mobile devices, which can
enhance user experience.
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