Errata for

Algorithms Sequential & Parallel, A Unified Approach (Second Edition)
Russ Miller and Laurence Boxer
Charles River Media, 2005

Chapter 1

- P. 23, l. 14- to 13-

 \(k \) in the worst case, and \(k/2 \) in the average case

 should be

 \(k - 1 \) in the worst case, and \((k - 1)/2 \) in the average case

- P. 30, l. 5:

 The \(O \)-notation was apparently

 should be

 The \(o \)-notation was apparently

- P. 33, top of page: In the algorithm for MinimumIndex, there are three occurrences of “at” that aren’t, but should be, italicized.

Chapter 2

- P. 36, l. 9-10: The list items should be numbered 1), 2), rather than a), b).

- P. 38, l. 2: There should be a period at the end of the line.

- P. 51, 2 paragraphs above Subprogram Split:

 Therefore, the running time of this simple merge algorithm is \(\Theta(k) \), where

 \(k \) is the length of the first input list to be exhausted.

 should be

 Therefore, the running time of this simple merge algorithm is \(\Theta(k) \), where

 \(k \) is the number of nodes (from both input lists) that have been merged
 when the first input list is exhausted.

- P. 56, l. 6-: In the function header, the argument \(n \) should be italicized.
Chapter 3

- P. 61, l. 3: “Let $f(n)$, be” should be “Let $f(n)$ be”

- P. 64, l. 6- - 5- (colon for period):

\[... \text{depends on the second summation.} \]

\[g(n) = \Theta \left[\sum_{\substack{0 \leq k \leq \log_b n - 1, \\ n / b^k \geq N}} a^k f \left(\frac{n}{b^k} \right) \right]. \]

should be

\[... \text{depends on the second summation:} \]

\[g(n) = \Theta \left[\sum_{\substack{0 \leq k \leq \log_b n - 1, \\ n / b^k > N}} a^k f \left(\frac{n}{b^k} \right) \right]. \]
Chapter 4

- P. 84, 2nd paragraph:

 exactly $\log^2 2n$ stages of merging

 should be

 exactly $\log_2 2n$ stages of merging
Chapter 5

- P. 99, ER PRAM Algorithm for Broadcasting:

 If \(j + 2^{i-1} \leq n \) then \(P_j \) writes \(d \) to \(P_{j+2^{i-1}} \)

 should be

 If \(j + 2^{i-1} \leq n \) then \(P_j \) writes \(d \) to \(d_{j+2^{i-1}} \)

- P. 100, RAM Minimum Algorithm: italicize “\(x_i \)” in “If \(x_i < \text{min_so_far} \)”

- P. 101, Figure 5.4: At Time Step 3, we should have \(T[1] = 4 \), not 15.

- P. 105, the algorithm:

 Output: succeeds, a flag indicating whether or not the search succeeds and location

 should be

 Output: \textit{succeeds}, a flag indicating whether or not the search succeeds, and \textit{location}

- P. 127 (italics):

 \[2n^{1/2}(2n^{1/2} - 1) - n = 3n - 2n^{1/2} \]

 should be

 \[2n^{1/2}(2n^{1/2} - 1) - n = 3n - 2n^{1/2} \]

- P. 136, 2nd and 3rd lines after caption:

 \((\log_2 n - i + 1)\) dimensional

 should be

 \((\log_2 n - i + 1)\) -dimensional

- P. 140, Cost/Work paragraph:

 Let \(T_{\text{par}}(n) \) represent

 should be

 Let \(T_{\text{par}}(n) \) represent
Chapter 6
No errata reported.

Chapter 7
• P. 174, l. 3 up: “subcube_prefix” should be italicized.

Chapter 8
No errata reported.
P. 208: Item 7’s “Else If” structure is more easily understood using the following alignment.

Else If \(k \leq |smallList| + |equalList| \) then return \(AM \)
Else {find result in \(bigList \)}
 CreateArray(\(bigList, bigList_array \))
 return Selection\(k - |smallList| - |equalList|, bigList_array, 1, |bigList| \)
End Else {find result in \(bigList \)}

P. 209, bullet item discussing Step 4:

We can simplify notation by saying that this step requires less than \(T(n/5) \) time.

should be

We can simplify notation by saying that this step requires \(T(n/5) \) time.

P. 210, item c), 2nd sentence:

Thus, the recursive call to \(Selection(k, smallList_array, 1, |smallList|, smallList_array, 1 | \) requires at most \(T(7n/10) \) time.

should be

Thus, the recursive call to \(Selection(k, smallList_array, 1, |smallList|) \) requires at most \(T(7n/10) \) time.

P. 210, l. 2 up – p. 211, l. 3: Delete the two sentences

An upper bound on the right side … we have \(T(n) = O(n) \).
Chapter 10

- P. 265, middle paragraph:
 It is easy to see how such an approach yields a $\Theta\left(n^2\right)$ time RAM algorithm for the intersection query problem, …
 should be
 It is easy to see how such an approach yields an $O\left(n^2\right)$ time RAM algorithm for the intersection query problem, …

- P. 269, Item 5:
 $$(a_i, b_j, i, j) \circ (a_k, b_m, k, m) = \begin{cases}
 (a_i, b_m, i, m) & \text{if } a_i \leq a_k \leq b_i < b_m \\
 (a_j, b_j, i, j) & \text{otherwise.}
\end{cases}$$
 Thus, $A \circ B$ represents $[a_i, b_j] \cup [a_k, b_m]$, provided these arcs intersect, $b \not\in [a_i, b_j]$, and $[a_k, b_m]$ extends $[a_i, b_j]$ to the right more than does $[a_j, b_j]$; …
 Because the intervals are ordered by their right endpoints, …
 should be
 $$(a_i, b_j, i, j) \circ (a_k, b_m, k, m) = \begin{cases}
 (a_i, b_m, i, m) & \text{if } a_i \leq a_k \leq b_i < b_m; \\
 (a_j, b_j, i, j) & \text{otherwise.}
\end{cases}$$
 Thus, $A \circ B$ represents $[a_i, b_j] \cup [a_k, b_m]$, provided these arcs intersect and $[a_k, b_m]$ extends $[a_i, b_j]$ to the right more than does $[a_j, b_j]$; …
 Because the intervals are ordered by their left endpoints, …

- P. 275: The last paragraph should not be labeled as item d), as it is a part of item c).
Chapter 11

- P. 292, Figure 11.7: There should be an arrow from the words “column \(k / 2 \)” to the horizontal center of the figure:

- P. 292, paragraph following Figure: There’s a bad line break in the equation

\[
S_{k+1}(i, j) = \min \{ S_k(i, j), S_k(i, k+1) + S_k(k+1, j) \}
\]
Chapter 12

- P. 304, last paragraph:

 A path … such that \((v_j, v_{i+1}) \in E\) …

 should be

 A path … such that \((v_j, v_{i+1}) \in E\) …

- P. 323, item 1:

 Entry \(A_k(i, j)\) … time \(3k + |k - i| + k - j| - 2\).

 should be

 Entry \(A_k(i, j)\) … time \(3k + |k - i| + |k - j| - 2\).

- P. 324, caption of Fig. 12.22:

 “At time \(t = 1\),” should be “At time \(t + 1\),”

- P. 326: In order to provide the line references that are used in Figure 12.25, the algorithm for the star function should be presented with lines numbered as follows:

 1. Determine the Boolean function \(\text{star}(v_i)\) for all \(v_i \in V\), as follows.
 2. For all vertices \(v_i\), do in parallel
 3. \(\text{star}(v_i) \leftarrow \text{true}\)
 4. If \(\text{root}(v_i) \neq \text{root}\left(\text{root}(v_i)\right)\), then
 5. \(\text{star}(v_i) \leftarrow \text{false}\)
 6. \(\text{star}\left(\text{root}(v_i)\right) \leftarrow \text{false}\)
 7. \(\text{star}\left(\text{root}\left(\text{root}(v_i)\right)\right) \leftarrow \text{false}\)
 8. End If
 9. \(\text{star}(v_i) \leftarrow \text{star}\left(\text{root}(v_i)\right)\)
 10. End For

- P. 326 (sentence following star algorithm):

 See Figure 12-25 for an example that shows the necessity of the step marked \{*\}.

 should be

 See Figure 12.25 for an example that shows the necessity of Step 9.

- P. 332, last sentence of first paragraph:

 Therefore, the running time … is \(O(E \log E)\), which is \(O(E \log V)\).

 should be

 Therefore, the running time … is \(\Theta(E \log E)\), which is \(\Theta(E \log V)\).
• P. 332, 2nd paragraph, 2nd sentence:
 Suppose that instead of initially sorting … into decreasing order
 should be
 Suppose that instead of initially sorting … into nondecreasing order

• P. 349, Exercise 9:
 A bipartite graph … with subsets \(V_0, V_1 \)
 should be
 A bipartite graph … with nonempty subsets \(V_0, V_1 \)
Chapter 13

- P. 353, 6 lines from bottom (space):
 \[nIsPrime \leftarrow true \]
 should be
 \[nIsPrime \leftarrow true \]

- P. 361, Table 13.1: The column headers are transposed. The left column should have the column header “\(d \)”. The right column should have the column header “\(n_d \)”.