Some Scalable Parallel Algorithms for Geometric Problems

L. Boxer, R. Miller, and A. Rau-Chaplin

miller@cs.buffalo.edu
Outline

1. Motivation
2. Models of Computation
3. Previous Results
4. Fundamental Operations
5. Sample Algorithm
6. Additional Results
7. Summary
Motivation

- Wealth of algorithms: fine-grained models.
- Commercial machines: coarse-grained.
- Fine-grained algorithms do not port well.
- Fine-grained algorithms often tied to interconnection network.
- Consider
 - scalable algorithms
 - interconnection-independent environment
 - geometric problems
Portable Models

- **BSP [Valiant90]**: supersteps consist of
 a) local computation,
 b) global communication, and then
 c) barrier synchronization.
 Input and output pool for each PE.

- **LogP [Culler93]**: PE is either in operational or stalling mode at each step. Operational: either a) local computation, b) receive message, or c) submit a message.

- **C^3 [Hambrusch95]**: considers the complexity of computation, the pattern of communication, and the potential congestion that arises during communication.
Coarse Grained Multicomputer (CGM)

- $CGM(n, p)$ consists of p processors, each with $\Omega(\frac{n}{p})$ local memory, where $\Omega(\frac{n}{p})$ is “considerably larger” than $\Theta(1)$.
- Arbitrary interconnection network.
- Examples: Cray T3D, IBM SP2, Intel Paragon, TMC CM-5
- For determining time complexities, consider both local computation time and interprocessor communication time.
Previous Results on CGM

- Area of union of rectangles [Dehne93]
- 3D-maxima [Dehne93]
- 2D-nearest neighbors of a point set [Dehne93]
- Lower envelope of non-intersecting line segments in plane [Dehne93]
- 2D-weighted dominance counting [Dehne93]
- Randomized 3D convex hull [Dehne95]
Fundamental Algorithms: Previous Results
(Sort-based)

\[T_{\text{sort}}(n, p): \text{the time required to sort } \Theta(n) \text{ data on a } CGM(n, p). \]

\(T_{\text{sort}}(n, p) \) time on a \(CGM(n, p) \) [Dehne]:

- **Segmented broadcast:** For indices \(1 \leq j_1 < j_2 < \ldots < j_q \leq p \), each PE \(P_{j_i} \) broadcasts a list of \(\frac{n}{p} \) data items to PEs \(P_{j_i+1}, \ldots, P_{j_i+1} \).

- **Multinode broadcast:** Every PE sends the same \(\Theta(1) \) data to every other PE.

- **Total exchange:** Every PE sends \(\Theta(1) \) data (not necessarily the same) to every other PE.
Fundamental Algorithms: New Results
(Sort-based)

$T_{\text{sort}}(n, p)$ time on a $CGM(n, p)$:

- **Permutation exchange:** Given a permutation σ, every PE P_i sends a list of $\frac{n}{p}$ data items to PE $P_{\sigma(i)}$.

- **Semigroup operation:** Let $X = \{x_n\}$ be distributed evenly among the PEs. Let \circ be a unit-time, associative, binary operation on X. Compute $x_1 \circ x_2 \circ \ldots \circ x_n$.
Fundamental Algorithms: New Results
(Sort-based)

$T_{\text{sort}}(n, p)$ time on a $C\!G\!M(n, p)$:

- **Parallel prefix:** Let $X = \{x_n\}$ be distributed evenly among the PEs. Let \circ be a unit-time, associative, binary operation on X. Compute all n members of $\{x_1, x_1 \circ x_2, \ldots, x_1 \circ x_2 \circ \ldots \circ x_n\}$.

- **Merge:** Let X and Y be lists of ordered data, each evenly distributed among the PEs, with $|X| + |Y| = \Theta(n)$. Combine these lists so that $X \cup Y$ is ordered and evenly distributed among the PEs.
Parallel search: Let $X = \{x_m\}$ and $Y = \{y_n\}$ be lists, each distributed evenly among the PEs. Each $x_i \in X$ searches Y for a value.

Time: $T_{\text{sort}}(m + n, p)$ on a $CGM(m + n, p)$.

Formation of combinations: Let $X = \{x_n\}$ and let $k > 1$ be a fixed positive integer. Form the set of $\Theta(n^k)$ combinations of members of X that have exactly k members.

Time: $O(T_{\text{sort}}(n^k, p))$ on a $CGM(n^k, p)$.
Fundamental Algorithms: New Results
(Sort-based)

- Formation of pairs from lists: Let $X = \{x_m\}$ and let $Y = \{y_n\}$. Form all pairs (x_i, y_j), where $x_i \in X$, $y_j \in Y$.

Time: $T_{\text{sort}}(mn, p)$ on a $CGM(mn, p)$.
All Rectangles Problem

Defn. A polygon \(P \) is *from* \(S \subset R^2 \) if all vertices of \(P \) belong to \(S \). The *AR problem* is to find all rectangles from \(S \).

Proposition [V KD91]: Let \(S \subset R^2 \), \(|S| = n \). Then a solution to the AR problem has \(\Theta(n^2 \log n) \) output in the worst case.
Scalable Algorithm for All Rectangles Problem

Theorem: Let $S = \{v_0, v_1, \ldots, v_{n-1}\}$ be given as input. Then the AR problem can be solved in $T_{\text{sort}}(n^2 \log n, p)$ time on a $CGM(n^2 \log n, p)$.

Note: A rectangle may be determined by a pair of opposite sides with nonnegative slope.
Algorithm: All Rectangles Problem

1. Form the set L of all line segments with endpoints in S and with nonnegative slopes.

2. Sort the members of L so that if $\ell_0 < \ell_1 < \ell_2$ and (ℓ_0, ℓ_2) is a pair of opposite sides of a rectangle, then (ℓ_0, ℓ_1) and (ℓ_1, ℓ_2) are pairs of opposite sides of rectangles.
Algorithm (cont’d)

3. Using parallel prefix:
 - For each $\ell \in L$, determine the first and last edge in its group.
 - For each $\ell \in L$, determine $First(\ell)$, the number of rectangles for which ℓ is the first edge.
 - For each $\ell \in L$, determine $Prec(\ell)$, the number of rectangles that precede it.
Algorithm (cont’d)

4. Using parallel search operations:

- Determine the first side of every rectangle based on the $Prec(\ell)$ and $First(\ell)$ values.
- Determine the second side of every rectangle based on the $Prec(\ell)$ and $First(\ell)$ values.
Lower Envelope

Defn.: Let S be a set of polynomial functions $\{f_n\}$. The lower envelope of S is the function

$$LE(x) = \min \{f_i(x) \mid i = 1, \ldots, n\}.$$

Theorem: Let k be a fixed positive integer and let S be a set of polynomial functions, each of degree at most k. Assume that the members of S are distributed evenly among the processors. Then the lower envelope of S may be determined in slightly worse than linear time and space.
Envelope-Related Problems

Theorem: Let S be a set of vertically convex polygons in \mathbb{R}^2 whose boundaries have a total of n line segments. Then the Common Intersection Problem for S can be solved in slightly worse than linear time and space.

Theorem: Let S be a system of point-objects, each of which is in k–motion in \mathbb{R}^d. Then, as a function of t, a nearest member of $S \setminus \{s_0\}$ to s_0 may be described in slightly worse than linear time and space.

Theorem: Let $S = \{P_0, \ldots, P_{n-1}\}$ be a set of points in the plane with k-motion. Then the ordered intervals of time during which a given point P_i is an extreme point of $\text{hull}(S)$ can be determined in slightly worse than linear time and space.
Maximal Collinear Sets

Defn.: Given a set S of n points in a Euclidean space, find all maximal equally-spaced collinear subsets of S determined by segments of any length ℓ. (The algorithm of [Kahng] runs in optimal $\Theta(n^2)$ serial time.)

Theorem: Let d be a fixed positive integer. Let $S \subset \mathbb{R}^d$, $|S| = n$. Then the AMESCS Problem can be solved for S in $T_{\text{sort}}(n^2, p)$ time on a $CGM(n^2, p)$.
Point Set Pattern Matching

Defn.: Given a set S of points in a Euclidean space \mathbb{R}^d and a pattern $P \subseteq \mathbb{R}^d$, find all instances of subsets $P' \subseteq S$ such that P and P' are congruent.

Theorem: The Point Set Pattern Matching Problem in \mathbb{R}^1 can be solved on a $CGM(k(n-k), p)$ in optimal $T_{sort}(k(n-k), p)$ time.
Summary

1. Scalable algorithms on *Coarse Grained Multicomputer*

2. Fundamental Operations

3. Geometric Problems