Knowledge Representation and Reasoning
Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering and Center for Cognitive Science
University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

Contents

Part I

1. Introduction ... 4
2. Propositional Logic ... 19
3. Predicate Logic Over Finite Models 173
4. Full First-Order Predicate Logic 224
5. Summary of Part I ... 363

Part II

6. Prolog ... 376
7. A Potpourri of Subdomains ... 412
8. SNePS ... 430
9. Belief Revision/Truth Maintenance 512
10. The Situation Calculus .. 570
11. Summary ... 589
Part III

12. Production Systems ... 602

13. Description Logic ... 611

14. Abduction .. 628
3 Predicate Logic Over Finite Models

3.1 CarPool World ... 174
3.2 The “Standard” Finite-Model Predicate Logic 175
3.3 Clause Form Finite-Model Predicate Logic 211
3.1 CarPool World

Propositional Logic

Tom drives Betty Betty drives Tom
Tom is the driver Betty is the driver
Tom is the passenger Betty is the passenger

related only by the domain rules.

Predicate Logic

Drives(Tom, Betty) Drives(Betty, Tom)
Driver(Tom) Driver(Betty)
Passenger(Tom) Passenger(Betty)

shows two properties, one relation, and two individuals.

Page 174
3.2 The “Standard”
Finite-Model Predicate Logic

1. Syntax ... 176
2. Substitutions ... 187
3. Semantics ... 190
4. Model Checking in Finite-Model Predicate Logic 202
3.2.1 Syntax of the “Standard”
Finite-Model Predicate Logic

Atomic Symbols

Individual Constants:

- Any letter of the alphabet (preferably early),
- any (such) letter with a numeric subscript,
- any character string not containing blanks nor other punctuation marks.

For example: \(a, B_{12}, Tom, Tom’s_mother-in-law \).
Atomic Symbols, Part 2

Variables:

- Any letter of the alphabet (preferably late),
- any (such) letter with a numeric subscript.

For example: u, v_6.

Page 177
Predicate Symbols:

- Any letter of the alphabet (preferably late middle),
- any (such) letter with a numeric subscript,
- any character string not containing blanks.

For example: $P, Q_4, Drives$.

Each Predicate Symbol must have a particular **arity**.

Use superscript for explicit arity.

For example: $P^1, Drives^2, Q_2^3$
Atomic Symbols, Part 4

In any specific predicate logic language

Individual Constants,
Variables,
Predicate Symbols

must be disjoint.

Set of individual constants and of predicate symbols must be finite.
Terms

- Every individual constant and variable is a term.
- Nothing else is a term.
Atomic Formulas

If P^n is a predicate symbol of arity n, and t_1, \ldots, t_n are terms,
then $P^n(t_1, \ldots, t_n)$ is an atomic formula.

E.g.: $Passenger^1(Tom)$, $Drives^2(Betty, y)$

(The superscript may be omitted if no confusion results.)
Well-Formed Formulas (wffs):

Every atomic formula is a wff.

If \(P \) is a wff, then so is \((\neg P) \).

If \(P \) and \(Q \) are wffs, then so are
\[
(P \land Q) \quad (P \lor Q)
\]
\[
(P \Rightarrow Q) \quad (P \iff Q)
\]

If \(P \) is a wff and \(x \) is a variable,
then \(\forall x(P) \) and \(\exists x(P) \) are wffs.

Parentheses may be omitted or replaced by square brackets if no confusion results.

We will allow \((P_1 \land \cdots \land P_n) \) and \((P_1 \lor \cdots \lor P_n) \).

\(\forall x(\forall y(P)) \) may be abbreviated as \(\forall x, y(P) \).

\(\exists x(\exists y(P)) \) may be abbreviated as \(\exists x, y(P) \).
Quantifiers:

In $\forall x P$ and $\exists x P$

\forall called the **universal quantifier**.

\exists called the **existential quantifier**.

P is called the **scope** of quantification.
Free and Bound Variables

Every occurrence of x in P, not in the scope of some other occurrence of $\forall x$ or $\exists x$, is said to be **free** in P and **bound** in $\forall x P$ and $\exists x P$.

Every occurrence of every variable other than x that is free in P is also free in $\forall x P$ and $\exists x P$.

$$\forall x[P(x, y) \iff [(\exists x\exists z Q(x, y, z)) \Rightarrow R(x, y)]]$$
Open, Closed, and Ground

A wff with a free variable is called open.
A wff with no free variables is called closed,
An expression with no variables is called ground.
CarPooled World Domain Rules

PropositionalLogic

Betty is the driver ⇔ ¬Betty is the passenger

Tom is the driver ⇔ ¬Tom is the passenger

Betty drives Tom ⇒ Betty is the driver ∧ Tom is the passenger

Tom drives Betty ⇒ Tom is the driver ∧ Betty is the passenger

Tom drives Betty ∨ Betty drives Tom

PredicateLogic

∀x(Driver(x) ⇔ ¬Passenger(x))

∀x, y(Drives(x, y) ⇒ (Driver(x) ∧ Passenger(y)))

Drives(Tom, Betty) ∨ Drives(Betty, Tom)

Page 186
3.2.2 Substitutions

Syntax

Pairs: \(t/v \) (Read: “t for v”)

- \(t \) is any term
- \(v \) is any variable

Substitutions: \(\{t_1/v_1, \ldots, t_n/v_n\} \)

- \(i \neq j \Rightarrow v_i \neq v_j \)
Terminology

\[\sigma = \{t_1/v_1, \ldots, t_n/v_n\} \]

\(t_i \) is a **term** in \(\sigma \)

\(v_i \) is a **variable** of \(\sigma \)

Say \(t_i/v_i \in \sigma \) and \(v_i \in \sigma \),
but not \(t_i \in \sigma \)

Note: \(x \) is not a variable of \(\{x/y\} \),
i.e. \(x/y \in \{x/y\}, y \in \{x/y\}, x \not\in \{x/y\} \)
Substitution Application

For expression A and substitution $\sigma = \{t_1/v_1, \ldots, t_n/v_n\}$

$A\sigma$: replace every free occurrence of each v_i in A by t_i

E.g.:

$P(x, y)\{x/y, y/x\} = P(y, x)$

$\forall x[P(x, y) \iff [(\exists x\exists zQ(x, y, z)) \Rightarrow R(x, y, z)]\{a/x, b/y, c/z\}$

$= \forall x[P(x, b) \iff [(\exists x\exists zQ(x, b, z)) \Rightarrow R(x, b, c)]]$
3.2.3 Semantics of Finite-Model Predicate Logic

Assumes a **Finite Domain**, \mathcal{D}, of

- individuals,
- sets of individuals,
- relations over individuals

Let \mathcal{I} be the set of all individuals in \mathcal{D}.

Page 190
Semantics of Individual Constants

$[a] = [a] =$ some particular individual in \mathcal{I}.

There is no anonymous individual.
I.e. for every individual, i in \mathcal{I}, there is an individual constant c such that $[c] = [c] = i$.
Semantics of Predicate Symbols

Predicate Symbols:

- \([P^1]\) is some category/property of individuals of \(\mathcal{I}\).
- \([P^n]\) is some n-ary relation over \(\mathcal{I}\).
- \([P^1]\) is some particular subset of \(\mathcal{I}\).
- \([P^n]\) is some particular subset of the relation \(\mathcal{I} \times \cdots \times \mathcal{I}\) \(n\) times
Intensional Semantics
of Ground Atomic Formulas

• If P^1 is some unary predicate symbol, and t is some individual constant, then $[P^1(t)]$ is the proposition that $[t]$ is an instance of the category $[P^1]$ (or has the property $[P^1]$).

• If P^n is some n-ary predicate symbol, and t_1, \ldots, t_n are individual constants, then $[P^n(t_1, \ldots, t_n)]$ is the proposition that the relation $[P^n]$ holds among individuals $[t_1]$, and \ldots, and $[t_n]$.
Extensional Semantics of Ground Atomic Formulas

• If P^1 is some unary predicate symbol, and t is some individual constant, then $\llbracket P^1(t) \rrbracket$ is True if $\llbracket t \rrbracket \in \llbracket P^1 \rrbracket$, and False otherwise.

• If P^n is some n-ary predicate symbol, and t_1, \ldots, t_n are individual constants, then $\llbracket P^n(t_1, \ldots, t_n) \rrbracket$ is True if $\langle \llbracket t_1 \rrbracket, \ldots, \llbracket t_n \rrbracket \rangle \in \llbracket P^n \rrbracket$, and False otherwise.
Semantics of WFFs, Part 1

\[\neg P, [P \land Q], [P \lor Q], [P \Rightarrow Q], [P \iff Q] \]

\[\neg P, [P \land Q], [P \lor Q], [P \Rightarrow Q], \text{ and } [P \iff Q] \]
are as they are in Propositional Logic.
Semantics of WFFs, Part 2

• $[\forall xP]$ is the proposition that every individual i in I, with “name” t_i, satisfies $[P\{t_i/x\}]$.

• $[\exists xP]$ is the proposition that some individual i in I, with “name” t_i, satisfies $[P\{t_i/x\}]$.

• $[\forall xP]$ is True if $[P\{t/x\}]$ is True for every individual constant, t. Otherwise, it is False.

• $[\exists xP]$ is True if there is some individual constant, t such that $[P\{t/x\}]$ is True. Otherwise, it is False.
Intensional Semantics
of Individual Constants
In CarPool World

\[Tom \] = Someone named Tom.
\[Betty \] = Someone named Betty.
Intensional Semantics
of Individual Constants
In 4-Person CarPool World
(Call it 4pCarPool World)

\[Tom\] = Someone named Tom.
\[Betty\] = Someone named Betty.
\[John\] = Someone named John.
\[Mary\] = Someone named Mary.
Intensional Semantics of Ground Atomic Wffs In Both CarPool Worlds

Predicate Symbols:

\[\text{Driver}^1(x) = [x] \text{ is the driver of the/a car.} \]
\[\text{Passenger}^1(x) = [x] \text{ is the passenger of the/a car.} \]
\[\text{Drives}^2(x, y) = [x] \text{ drives } [y] \text{ to work.} \]
Extensional Semantics of One CarPool World Situation

\[
[\text{Tom}] = \text{Tom}.
\]
\[
[\text{Betty}] = \text{Betty}.
\]
\[
[\text{Driver}] = \{\text{Betty}\}.
\]
\[
[\text{Passenger}] = \{\text{Tom}\}.
\]
\[
[\text{Drives}] = \{\langle \text{Betty, Tom}\rangle\}.
\]
Extensional Semantics of
One 4pCarPool World Situation

\[
\begin{align*}
\lbrack\text{Tom}\rbrack &= \text{Tom}. \\
\lbrack\text{Betty}\rbrack &= \text{Betty}. \\
\lbrack\text{John}\rbrack &= \text{John}. \\
\lbrack\text{Mary}\rbrack &= \text{Mary}. \\
\lbrack\text{Driver}\rbrack &= \{\text{Betty, John}\}. \\
\lbrack\text{Passenger}\rbrack &= \{\text{Mary, Tom}\}. \\
\lbrack\text{Drives}\rbrack &= \{\langle\text{Betty, Tom}\rangle, \langle\text{John, Mary}\rangle\}.
\end{align*}
\]
3.2.4 Model Checking in Finite-Model Predicate Logic

- n Individual Constants.
- Predicate P^j yields n^j ground atomic propositions.
- k_j predicates of arity j yields $\sum_j (k_j \times n^j)$ ground atomic propositions.
- So $2\sum_j (k_j \times n^j)$ situations (columns of truth table).
- CarPoi World has $2^{(2 \times 2^1 + 1 \times 2^2)} = 2^8 = 256$ situations.
- 4pCarPoi World has $2^{(2 \times 4^1 + 1 \times 4^2)} = 2^{2^4} = 16,777,216$ situations.
Some CarPool World Situations

<table>
<thead>
<tr>
<th></th>
<th>Driver(Tom)</th>
<th>Driver(Betty)</th>
<th>Passenger(Tom)</th>
<th>Passenger(Betty)</th>
<th>Drives(Tom, Tom)</th>
<th>Drives(Tom, Betty)</th>
<th>Drives(Betty, Tom)</th>
<th>Drives(Betty, Betty)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

\[\forall x (\text{Driver}(x) \Leftrightarrow \neg \text{Passenger}(x)) \]

\[\forall x \forall y (\text{Drives}(x, y) \Rightarrow (\text{Driver}(x) \Leftrightarrow \text{Passenger}(y))) \]

F T T

T T T

Page 203
Turning Predicate Logic Over Finite Domains Into Ground Predicate Logic

If c_1, \ldots, c_n are the individual constants,

- Turn $\forall x P(x)$ into $P(c_1) \land \cdots \land P(c_n)$
- and $\exists x P(x)$ into $P(c_1) \lor \cdots \lor P(c_n)$
- E.g.:

\[
\forall x \exists y (\text{Drives}(x, y)) \iff \exists y \text{Drives}(\text{Tom}, y) \land \exists y \text{Drives}(\text{Betty}, y) \\
\iff (\text{Drives}(\text{Tom}, \text{Tom}) \lor \text{Drives}(\text{Tom}, \text{Betty})) \\
\land (\text{Drives}(\text{Betty}, \text{Tom}) \lor \text{Drives}(\text{Betty}, \text{Betty}))
\]
Sorted Logic: A Digression

Introduce a hierarchy of sorts, s_1, \ldots, s_n.

(A sort in logic is similar to a data type in programming.)

Assign each individual constant a sort.

Assign each variable a sort.

Declare the sort of each argument position of each predicate symbol.

An atomic formula, $P^n(t_1, \ldots, t_n)$ is only syntactically valid if the sort of t_i, for each i, is the sort, or a subsort of the sort, declared for the i^{th} argument position of P^n.

Page 205
Predicate 2-Car CarPool World in Decreasoner

sort commuter
commuter Tom, Betty
sort car
car TomsCar, BettysCar

;;; [DrivesIn(x,y,c)] = [x] drives [y] to work in car [c].
predicate DrivesIn(commuter, commuter, car)

;;; [DriverOf(x,c)] = [x] is the driver of car [c].
predicate DriverOf(commuter, car)

;;; [PassengerIn(x,c)] = [x] is a passenger in car [c].
predicate PassengerIn(commuter, car)
Number of Ground Atomic Propositions

Unsorted vs. Sorted

<table>
<thead>
<tr>
<th>Atomic Proposition</th>
<th>Unsorted</th>
<th>Sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrivesIn(commuter, commuter, car)</td>
<td>$4^3 = 64$</td>
<td>$2^3 = 8$</td>
</tr>
<tr>
<td>DriverOf(commuter, car)</td>
<td>$4^2 = 16$</td>
<td>$2^2 = 4$</td>
</tr>
<tr>
<td>PassengerIn(commuter, car)</td>
<td>$4^2 = 16$</td>
<td>$2^2 = 4$</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>16</td>
</tr>
</tbody>
</table>
Domain Rules of 2-Car CarPool World

;;; If someone’s a driver of one car, they’re not a passenger in any car.
;;; (And if someone’s a passenger in one car, they’re not driver of any car.)
[commuter][car1][car2] (DriverOf(commuter, car1) -> !PassengerIn(commuter, car2)).

;;; If A drives B in car C, then A is the driver of and B is a passenger in C.
[commuter1][commuter2][car] (DrivesIn(commuter1, commuter2, car)
-> DriverOf(commuter1, car)
& PassengerIn(commuter2, car)).

;;; Either Tom drives Betty in Tom’s car or Betty drives Tom in Betty’s car.
DrivesIn(Tom, Betty, TomsCar) | DrivesIn(Betty, Tom, BettysCar).

;;; Tom doesn’t drive Betty’s car, and Betty doesn’t drive Tom’s car.
!DriverOf(Tom, BettysCar) & !DriverOf(Betty, TomsCar).

;;; Neither Tom nor Betty is a passenger in their own car.
!PassengerIn(Tom, TomsCar) & !PassengerIn(Betty, BettysCar).
Decreasoner Produces Two Models

The True propositions:

model 1: model 2:
DriverOf(Betty, BettysCar). DriverOf(Tom, TomsCar).
DrivesIn(Betty, Tom, BettysCar). DrivesIn(Tom, Betty, TomsCar).
PassengerIn(Tom, BettysCar). PassengerIn(Betty, TomsCar).
Use of Predicate-Wang

cl-user(12): (wang:Predicate-Entails
 '((forall (x y)
 (if (Drives x y)
 (and (Driver x) (Passenger y)))))
 (Drives Betty Tom))
'(and (Driver Betty) (Passenger Tom))
'(Betty Tom))

t
3.3 Clause Form
Finite-Model Predicate Logic

1. Syntax ... 212
2. Semantics .. 213
3. Model Finding ... 215
3.3.1 Syntax of Clause Form
Finite-Model Predicate Logic

Individual constants, predicate symbols, terms, and ground atomic formulas as in standard finite-model predicate logic. (Variables are not needed.)

Literals, clauses and sets of clauses as in propositional clause form logic.
3.3.2 Semantics of Clause Form
Finite-Model Predicate Logic

- Individual constants, predicate symbols, terms, and ground atomic formulas as in standard finite-model predicate logic.
- Ground literals, ground clauses, and sets of ground clauses as in propositional clause form logic.
Translation of Standard Form to Clause Form

Finite-Model Predicate Calculus

1. Eliminate quantifiers as when using model checking.
2. Translate into clause form as for propositional logic.
3.3.3 Model Finding: GSAT

procedure GSAT(C, tries, flips)
 input: a set of clauses C, and positive integers $tries$ and $flips$
 output: a model satisfying C, or failure
 for $i := 1$ to $tries$ do
 $M :=$ a randomly generated truth assignment
 for $j := 1$ to $flips$ do
 if $M \models C$ then return M
 $p :=$ an atom such that a change in its truth assignment gives the largest increase in the total number of clauses in C that are satisfied by M
 $M := M$ with the truth assignment of p reversed
 end for
 end for
 return “no satisfying interpretation found”

A Pedagogical Implementation of GSAT

/projects/shapiro/CSE563/gsat.cl

Uses wang:expand to eliminate quantifiers,

and prover:clauseForm to translate to clause form.
Example GSAT Run

cl-user(1): :ld /projects/shapiro/CSE563/gsat
...
cl-user(2): :pa gsat
gsat(3): (gsat '((forall x (iff (Driver x) (not (Passenger x))))
 (forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))))
 (or (Drives Tom Betty) (Drives Betty Tom))
 (Driver Betty))
 30 6)

A satisfying model (found on try 17) is
(((Driver Tom) nil) ((Passenger Tom) t)
 ((Drives Betty Betty) nil) ((Drives Tom Tom) nil)
 ((Drives Betty Tom) t) ((Drives Tom Betty) nil)
 ((Driver Betty) t) ((Passenger Betty) nil))

#<equal hash-table with 8 entries @ #x4a64dca>
Using GSAT to Find
The Value of a Wff in a KB

gsat(19): (ask '(and (Drives Betty Tom) (Passenger Tom))
 '(((forall x (iff (Driver x) (not (Passenger x)))))
 (forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))
 (or (Drives Tom Betty) (Drives Betty Tom))
 (Driver Betty))
 30 6)

A satisfying model (found on try 19) is
(((Drives Tom Tom) nil) ((Drives Betty Tom) t)
((Driver Betty) t) ((Passenger Tom) t)
((Drives Tom Betty) nil) ((Driver Tom) nil)
((Drives Betty Betty) nil) ((Passenger Betty) nil))

(and (Drives Betty Tom) (Passenger Tom)) is True in a model of the KB.
il

Page 218
Model Finding: Walksat
A More Efficient Version of GSAT

DIMACS FORMAT:
Code each atomic formula as a positive integer:
c 1 Drives(Tom, Betty) Tom drives Betty to work.
c 2 Drives(Betty, Tom) Betty drives Tom to work.
c 3 Driver(Tom) Tom is the driver of the car.
c 4 Driver(Betty) Betty is the driver of the car.
c 5 Passenger(Tom) Tom is the passenger of the car.
c 6 Passenger(Betty) Betty is the passenger of the car.
DIMACS cont’d

Code each clause as a set ± integers, terminated by 0:

\[
\begin{align*}
&c \ ((\neg (\text{Driver Tom})) \ (\neg (\text{Passenger Tom}))) \\
&\quad -3 \ -5 \ 0 \\
&c \ ((\neg (\text{Driver Betty})) \ (\neg (\text{Passenger Betty}))) \\
&\quad -4 \ -6 \ 0 \\
&c \ ((\text{Passenger Tom}) \ (\text{Driver Tom})) \\
&\quad 5 \ 3 \ 0 \\
&c \ ((\text{Passenger Betty}) \ (\text{Driver Betty})) \\
&\quad 6 \ 4 \ 0 \\
&c \ ((\neg (\text{Drives Tom Betty})) \ (\text{Driver Tom})) \\
&\quad -1 \ 3 \ 0 \\
&c \ ((\neg (\text{Drives Betty Tom})) \ (\text{Driver Betty})) \\
&\quad -2 \ 4 \ 0 \\
&c \ ((\neg (\text{Drives Tom Betty})) \ (\text{Passenger Betty})) \\
&\quad -1 \ 6 \ 0 \\
&c \ ((\neg (\text{Drives Betty Tom})) \ (\text{Passenger Tom})) \\
&\quad -2 \ 5 \ 0 \\
&c \ ((\text{Drives Tom Betty}) \ (\text{Drives Betty Tom})) \\
&\quad 1 \ 2 \ 0 \\
&c \ ((\text{Driver Betty})) \\
&\quad 4 \ 0
\end{align*}
\]
Running Walksat

% /projects/shapiro/CSE563/WalkSAT/Walksat_v46/walksat -solcnf
 < /projects/shapiro/CSE563/WalkSAT/cpw.cnf

... ASSIGNMENT FOUND
v -1
v 2
v -3
v 4
v 5
v -6
Model Finding: Decreasoner

Decreasoner translates sorted finite-model predicate logic wffs into DIMACS clause form.

Decreasoner gives set of clauses to Relsat.

Relsat systematically searches all models. It either:

- reports that there are no satisfying models;
- returns up to MAXMODELS (currently 100) satisfying models;
- or gives up.

If Relsat gives up, Decreasoner gives set of clauses to Walksat. It either:

- returns some satisfying models;
- or returns some “near misses”;
- or gives up.
Decreasoner, Walksat, and “Near Misses”

“Let’s say that an ”N-near miss model of a SAT problem” is a truth assignment that satisfies all but N clauses of the problem. Walksat provides the command-line option:

\[-\text{target } N = \text{succeed if N or fewer clauses unsatisfied}\]

If relsat produces no models, the Discrete Event Calculus Reasoner invokes walksat with \text{-target 1}. If this fails, it invokes walksat with \text{-target 2}. If this fails, it gives up. One or two unsatisfied clauses may be helpful for debugging. In my experience, three or more unsatisfied clauses are less useful.

If you get a near miss model, it’s often useful to rerun the Discrete Event Calculus Reasoner. Because walksat is stochastic, you may get back a different near miss model, and that near miss model may be more informative than the previous one.”

[Erik Mueller, email to scs, 1/12/2007]