K-map with don't care conditions:

Consider 4-bit binary $\rightarrow 0000 \uparrow 0, 3$ digits

Possible combinations: 1111

1010 don't care input conditions because they never occur in the input

we'll leverage this fact (don't cares) to simplify better.

30, 13

don't cares can be treated as a 1 or 0 on the k-map.
\[f(w, x, y, z) = \Sigma(0, 2, 3, 5, 6, 7, 8, 9) \]

don't cares \(\Delta(w, x, y, z) = \Sigma(10, 11, 12, 13, 14, 15) \)

\[w'y' + w'x + wz + wx'y' + x'yz' \]

4 terms
11 literals

without don't using don't care conditions:

now let's repeat this problem but with don't cares

\[f(w, x, y, z) \]

\[y' + w' + x'z' + xz' \]

= 4 terms
= 6 literals

Implement using NAND

\[y = (y')' \]
\[w = (w')' \]
\[x = (x')' \]
\[z = (z')' \]

\[f(w, x, y, z) \]

\[w' + x + y + z \]
\[f(w, x, y, z) = \Sigma(0, 2, 6, 8) \]
\[g(w, x, y, z) = \Sigma(10, 11, 12, 13, 14, 15) \]

2 terms \(\Rightarrow \) 3 literals each
6 literals

Lesson: You don't have to cover all the "don't cares"

2 groups of 4 1's:

\[f(w, x, y, z) = x'z + yz' \]

Sum of minterms
Canonical form
Sum of products - **Standard form**

NAND only implementation
3.23

\[F(A, B, C, D) = \Sigma(2, 4, 10, 12, 14) \]
\[d(A, B, C, D) = \Sigma(0, 1, 5, 8) \]

Implement the simplified function using only 2 gates: (Hint: NOR gates)

- 3 terms \(\Rightarrow \) 3 gates
- 3 groups of 4 1's

With NAND implementation we cannot meet the constraint.

\[A + 1: \text{ Cover only the 0's + 1's} \]

\[f' = D \cdot 1 + A \cdot B \cdot C \]

\[f'(D' + 1)^2 - D' = D' \]

\[f: D + A + B \cdot C = (f')' = f \]
\[(C \cdot D + A \cdot B \cdot C)' = D' \]
\[F' = D + A'BC \]

\[F = (F')' = (D + A'BC)' \]

\[= (D + (A'BC))' \]

\[A'BC = ((A'BC)')' \]

\[= (A + B' + C')' \]

De Morgan's law