Relational Database Design

Jan Chomicki
University at Buffalo

Outline

1. Functional dependencies
2. Normal forms
3. Multivalued dependencies
“Good” and “bad” database schemas

“Bad” schema

- **Repetition** of information. Leads to **redundancies**, potential inconsistencies, and update **anomalies**.
- **Inability to represent** information. Leads to **anomalies** in insertion and deletion.

“Good” schema

- relation schemas in **normal form** (redundancy- and anomaly-free): BCNF, 3NF.

Schema decomposition

- improving a bad schema
- desirable properties:
 - lossless join
 - dependency preservation

Integrity constraints

Functional dependencies

- key constraints cannot express uniqueness properties holding in a proper subset of all attributes
- key constraints need to be generalized to functional dependencies

Other constraints

- not relevant for decomposition
Functional dependencies (FDs)

Notation
- Relation schema $R(A_1, \ldots, A_n)$
- r is an instance of R
- Sets of attributes of R: $X, Y, Z, \ldots \subseteq \{A_1, \ldots, A_n\}$
- $A_1 \cdots A_n$ instead of $\{A_1, \ldots, A_n\}$.
- XY instead of $X \cup Y$.

Functional dependency
- Syntax: $X \rightarrow Y$
- Semantics: r satisfies $X \rightarrow Y$ if for all tuples $t_1, t_2 \in r$:

 If $t_1[X] = t_2[X]$, then also $t_1[Y] = t_2[Y]$.

Dependency implication

Implication
A set of FDs F implies an FD $X \rightarrow Y$, if every relation instance that satisfies all the dependencies in F, also satisfies $X \rightarrow Y$.

Notation
$F \models X \rightarrow Y$ (F implies $X \rightarrow Y$).

Closure of a dependency set F
The set of dependencies implied by F.

Notation
$F^+ = \{X \rightarrow Y : F \models X \rightarrow Y\}$.
Keys

Key

$X \subseteq \{A_1, \ldots, A_n\}$ is a key of R if:

1. the dependency $X \rightarrow A_1 \cdots A_n$ is in F^+.
2. for all proper subsets Y of X, the dependency $Y \rightarrow A_1 \cdots A_n$ is not in F^+.

Related notions

- **superkey**: superset of a key.
- **primary key**: one designated key.
- **candidate key**: one of the keys.

Inference of functional dependencies

Dependency inference

How to tell whether $X \rightarrow Y \in F^+$?

Inference rules (Armstrong axioms)

- **reflexivity**: infer $X \rightarrow Y$ if $Y \subseteq X \subseteq \text{attrs}(R)$ (trivial dependency)
- **augmentation**: From $X \rightarrow Y$ infer $XZ \rightarrow YZ$ if $Z \subseteq \text{attrs}(R)$
- **transitivity**: From $X \rightarrow Y$ and $Y \rightarrow Z$, infer $X \rightarrow Z$.
Properties of axioms

Armstrong axioms are:
- **sound**: if \(X \rightarrow Y \) is derived from \(F \), then \(X \rightarrow Y \in F^+ \).
- **complete**: if \(X \rightarrow Y \in F^+ \), then \(X \rightarrow Y \) is derived from \(F \).

Additional (implied) inference rules

4. **union**: from \(X \rightarrow Y \) and \(X \rightarrow Z \), infer \(X \rightarrow YZ \)
5. **decomposition**: from \(X \rightarrow Y \) infer \(X \rightarrow Z \), if \(Z \subseteq Y \)

Boyce-Codd Normal Form (BCNF) and 3NF

BCNF
A schema \(R \) is in BCNF if for every nontrivial FD \(X \rightarrow A \in F \), \(X \) contains a key of \(R \).

Each instance of a relation schema which is in BCNF does not contain a redundancy (that can be detected using FDs alone).

3NF
\(R \) is in 3NF if for every nontrivial FD \(X \rightarrow A \in F \):
- \(X \) contains a key of \(R \), or
- \(A \) is part of some key of \(R \).

BCNF vs. 3NF
- if \(R \) is in BCNF, it is also in 3NF
- there are relations that are in 3NF but not in BCNF.
Decompositions

Decomposition
Replacement of a relation schema R by two relation schema R_1 and R_2 such that $R = R_1 \cup R_2$.

Lossless-join decomposition
(R_1, R_2) is a lossless-join decomposition of R with respect to a set of FDs F if for every instance r of R that satisfies F:

$$\pi_{R_1}(r) \Join \pi_{R_2}(r) = r.$$

A simple criterion for checking whether a decomposition (R_1, R_2) is lossless-join:
- $R_1 \cap R_2 \rightarrow R_1 \in F^+$, or
- $R_1 \cap R_2 \rightarrow R_2 \in F^+$.

Decomposition into more than two schemas
- generalized definition
- more complex losslessness test

Dependency preservation

Dependencies associated with relation schema R_1 and R_2 in a decomposition (R_1, R_2):

$$F_{R_1} = \{X \rightarrow Y | X \rightarrow Y \in F^+ \land XY \subseteq R_1\}$$

$$F_{R_2} = \{X \rightarrow Y | X \rightarrow Y \in F^+ \land XY \subseteq R_2\}.$$

(R_1, R_2) preserves a dependency f iff $f \in (F_{R_1} \cup F_{R_2})^+$.
Decomposition into BCNF

Algorithm: decomposition of schema R

- For some nontrivial nonkey dependency $X \rightarrow A$ in F^+:
 - create a relation schema R_1 with the set of attributes XA and FDs F_{R_1}.
 - create a relation schema R_2 with the set of attributes $R - \{A\}$ and FDs F_{R_2}.
- Decompose further the resulting schemas which are not in BCNF.

This algorithm produces a lossless-join decomposition into BCNF which does not have to preserve dependencies.

Decomposition (synthesis) into 3NF

Minimal basis F' for F

- set of FDs equivalent to F ($F^+ = (F')^+$),
- all FDs in F' are of the form $X \rightarrow A$ where A is a single attribute,
- further simplification by removing dependencies or attributes from dependencies in F' yields a set of FDs inequivalent to F.

Algorithm: 3NF synthesis

- Create a minimal basis F'.
- Create a relation with attributes XA for every dependency $X \rightarrow A \in F'$.
- Create a relation X for some key X of R.
- Remove redundancies.

This algorithm produces a lossless-join decomposition into 3NF which preserves dependencies.
Multivalued dependencies (MVDs)

Notation
- Relation schema $R(A_1, \ldots, A_n)$.
- r is an instance of R.
- Sets of attributes: $X, Y, Z, \ldots \subseteq \{A_1, \ldots, A_n\}$.

Multivalued dependency
- Syntax: a pair $X \rightarrow\rightarrow Y$.
- Semantics: r satisfies $X \rightarrow\rightarrow Y$ if for all tuples $t_1, t_2 \in r$:

 \[
 \text{if } t_1[X] = t_2[X], \text{ then there is a tuple } t_3 \in r \text{ such that } t_3[XY] = t_1[XY] \\
 \text{and } t_3[Z] = t_2[Z],
 \]

 where $Z = \{A_1, \ldots, A_n\} - XY$.

Implication
Defined in the same way as for FDs.

Fourth Normal Form (4NF)

F is the set of FDs and MVDs associated with a relation schema $R = \{A_1, \ldots, A_n\}$.

4NF
R is in 4NF if for every multivalued dependency $X \rightarrow\rightarrow Y$ entailed by F:
- $Y \subseteq X$ or $XY = \{A_1, \ldots, A_n\}$ (trivial MVD), or
- X contains a key of R.