Query optimization

Stages:

1. Parsing, validation, view expansion.

2. Logical plan selection (using algebraic laws).

3. Physical plan selection (cost-based)

Textbook: chapter 14
Algebraic laws

Assumption: tuples are mappings from attribute names to domain values.

Join:

\[E_1 \Join E_2 = E_2 \Join E_1 \]

\[(E_1 \Join E_2) \Join E_3 = E_1 \Join (E_2 \Join E_3). \]

Similarly for Cartesian product.

Cascading:

\[\pi_{A_1,\ldots,A_n}(\pi_{A_1,\ldots,A_n,\ldots,A_{n+k}}(E)) = \pi_{A_1,\ldots,A_n}(E) \]

\[\sigma_{F_1}(\sigma_{F_2}(E)) = \sigma_{F_1 \land F_2}(E) \]
Commuting projections

With selection:

\[\pi_{A_1, \ldots, A_n} (\sigma_F(E)) = \sigma_F(\pi_{A_1, \ldots, A_n}(E)) \]

if \(F \) does not involve any attributes other than \(A_1, \ldots, A_n \).

With Cartesian product:

\[\pi_{A_1, \ldots, A_n, A_{n+1}, \ldots, A_{n+k}} (E_1 \times E_2) = \]
\[\pi_{A_1, \ldots, A_n}(E_1) \times \pi_{A_{n+1}, \ldots, A_{n+k}}(E_2) \]

where \(A_1, \ldots, A_n \) come from \(E_1 \) and \(A_{n+1}, \ldots, A_{n+k} \) come from \(E_2 \).

With union:

\[\pi_{A_1, \ldots, A_n}(E_1 \cup E_2) = \pi_{A_1, \ldots, A_n}(E_1) \cup \pi_{A_1, \ldots, A_n}(E_2). \]
Commuting selections

With **Cartesian product**:

$$\sigma_F(E_1 \times E_2) = \sigma_F(E_1) \times E_2$$

if F involves only the attributes of E_1.

Similarly for E_2.

With **union**:

$$\sigma_F(E_1 \cup E_2) = \sigma_F(E_1) \cup \sigma_F(E_2).$$

With **set difference**:

$$\sigma_F(E_1 - E_2) = \sigma_F(E_1) - \sigma_F(E_2).$$
Cost-based query optimization

Logical query plan:

- expression in relational algebra
- produced by rewrite rules that are obtained from the algebraic laws.

Physical query plan:

- \textit{operators}: different implementations of relational algebra operators
- \textit{table-scan}, \textit{index-scan}, \textit{sort-scan}, \textit{sort}.

A physical query plan of \textbf{least estimated cost} is produced from a logical query plan.
Choices to be made

1. order and grouping of joins
2. choosing an algorithm for each operator occurrence
3. adding other operators like sorting
4. materialization vs. pipelining

Assumption: relation \equiv file.
Cost estimation using size estimates

Size estimates should be:

- accurate
- easy to compute
- consistent

We use:

- \(B(R) \): number of blocks in relation \(R \)
- \(T(R) \): number of tuples in relation \(R \)
- \(V(R, A) \): number of distinct values \(R \) has in attribute \(A \) (can be generalized to sets of attributes)
Results of RA operators

Projection:

- $T(\pi_X(R)) = T(R)$ on how much is projected out

Selection:

- $T(\sigma_{A=c}(R)) = T(R)/V(R, A)$
- $T(\sigma_{A<c}(R)) = T(R)/3$
- $T(\sigma_{C_1 \land C_2}(R)) = T(\sigma_{C_1}(\sigma_{C_2}(R)))$
- $T(\sigma_{C_1 \lor C_2}(R)) = \min(T(R), T(\sigma_{C_1}(R)) + T(\sigma_{C_2}(R)))$

Those estimates may be inconsistent.
Natural join $R(X, Y) \bowtie S(Y, Z)$

Assumptions:

- **Containment**: $V(R, Y) < V(S, Y)$ implies $\pi_Y(R) \subseteq \pi_Y(S)$
- **Preservation**: $V(R \bowtie S, A) = V(R, A)$.

Case 1: Y consists of one attribute A:

$$T(R \bowtie S) = \frac{T(R)T(S)}{\max(V(R, A), V(S, A))}.$$

Case 2: Y consists of n attributes A_1, \ldots, A_n:

$$T(R \bowtie S) = \frac{T(R)T(S)}{\prod_{j=1,...,n} \max(V(R, A_j), V(S, A_j))}.$$
Multiway join $S = R_1 \Join \cdots \Join R_k$

Assume $A_1, \ldots A_n$ are the attributes that appear in more than one relation.

The A_j-factor $M(A_j)$ for an attribute A_j is the product of $V(R_i, A_j)$ for every relation R_i in which A_j appears, except for the smallest one.

$$T(R_1 \Join \cdots \Join R_k) = \frac{\prod_{i=1,\ldots,k} T(R_i)}{\prod_{j=1,\ldots,n} M(A_j)}.$$

Better estimates exist, for example based on histograms.
Enumerating physical plans for $R_1 \bowtie \cdots \bowtie R_k$

Bottom-up approach, based on *dynamic programming*.

Assumptions (usual):

- **left-deep** trees: more efficient use of space
- cost = size of intermediate results
Constructing a table $D(\text{Size}, \text{LeastCost}, \text{BestPlan})$:

- Base cases:
 - One relation R: $D(T(R), 0, R)$
 - One join $R_i \Join R_j$: $D(T(R_i \Join R_j), 0, R_i \Join R_j)$ if $T(R_i) \leq T(R_j)$

- Inductive case $\Join\iota$:
 1. $\mathcal{R} = \{R_{i_1}, \ldots, R_{i_m}\}$ for $m < k$
 2. for every $j \in \{i_1, \ldots, i_m\}$, retrieve the tuple $D(T(\bigJoin_{i \neq j, R_i \in \mathcal{R}} R_i), C_j, E_j)$
 3. find $p \in \{i_1, \ldots, i_m\}$ such that $C_p + T(\bigJoin_{i \neq p, R_i \in \mathcal{R}} R_i)$ is minimal
 4. return $D(T((\bigJoin_{i \neq p, R_i \in \mathcal{R}} R_i) \Join R_p), C_p + T(\bigJoin_{i \neq p, R_i \in \mathcal{R}} R_i), ((\bigJoin_{i \neq p, R_i \in \mathcal{R}} R_i) \Join R_p))$

How many plans are considered?
Refinements

More sophisticated cost measure:

- calculating the cost of using different algorithms for the same operation
- keeping multiple plans, together with their costs, to account for interesting join orders.

Greedy algorithm:

1. start with a pair of relations whose estimated join size is minimal
2. keep adding further relations with minimal estimated join size
Completing the evaluation plan

Operations:

- TableScan(Relation)
- SortScan(Relation, Attributes)
- IndexScan(Relation, Condition)
- Filter(Condition)
- Sort(Attributes)

- different algorithms for the basic operations

Pipelining vs. materialization.