Database

You are given the following relational schema:

\[
\begin{align*}
\text{Movie}(\text{Title, Dname}) \\
\text{Cast}(\text{Title, Aname, Role}) \\
\text{Actor}(\text{Aname, Addr}) \\
\text{Award}(\text{Aname, Year, Title})
\end{align*}
\]

Keys are underlined.

Problem 1

Consider the following query:

\[
Q_1 \equiv \text{Movie} \bowtie \text{Cast} \bowtie \text{Actor} \bowtie \text{Award}.
\]

You are given the following cardinality estimates:

\[
\begin{align*}
T(\text{Movie}) &= V(\text{Movie, Title}) = 10000 \\
V(\text{Movie, Dname}) &= 1000 \\
T(\text{Cast}) &= 50000 \\
V(\text{Cast, Title}) &= 10000 \\
T(\text{Actor}) &= V(\text{Cast, Aname}) = V(\text{Actor, Aname}) = 4000 \\
T(\text{Award}) &= 500 \\
V(\text{Award, Aname}) &= 200 \\
V(\text{Award, Title}) &= 100
\end{align*}
\]

Calculate the plan of least estimated cost using the dynamic programming algorithm.

Solution

\[
\begin{array}{|c|c|c|}
\hline
\text{Relations} & \text{Cost} & \text{Best plan} \\
\hline
\text{Movie, Cast} & 0 & \text{Movie} \bowtie \text{Cast} \\
\text{Cast, Actor} & 0 & \text{Actor} \bowtie \text{Cast} \\
\text{Actor, Award} & 0 & \text{Award} \bowtie \text{Actor} \\
\text{Movie, Award} & 0 & \text{Award} \bowtie \text{Movie} \\
\text{Cast, Award} & 0 & \text{Award} \bowtie \text{Cast} \\
\text{Movie, Cast, Actor} & 50000 & (\text{Movie} \bowtie \text{Cast}) \bowtie \text{Actor} \\
\text{Movie, Cast, Award} & 500 & (\text{Award} \bowtie \text{Movie}) \bowtie \text{Cast} \\
\text{Cast, Actor, Award} & 500 & (\text{Award} \bowtie \text{Actor}) \bowtie \text{Cast} \\
\text{Movie, Actor, Award} & 500 & (\text{Award} \bowtie \text{Actor}) \bowtie \text{Movie} \\
\text{Movie, Cast, Actor, Award} & 501 & ((\text{Award} \bowtie \text{Movie}) \bowtie \text{Cast}) \bowtie \text{Actor} \\
\hline
\end{array}
\]

For multiple plans with the same cost only one is selected above.
Problem 2

Consider the following query:

\[Q_2 \equiv \sigma_{\text{Cast.Role} = \text{"star"}}(\text{Movie} \bowtie \text{Cast}). \]

Explain how indexes can be used to make the evaluation of the query \(Q_2 \) more efficient. List all such indexes and specify whether they are primary or secondary, sparse or dense. Describe the evaluation plans that use the indexes.

Solution

1. Dense secondary index on \(\text{Cast.Role} \).
2. Dense secondary index on \(\text{Cast.Title} \).

Evaluation plans:

1. \(\text{HashJoin(TableScan(Movie), IndexScan(Cast, Cast.Role = \text{"star"}))} \)
2. \(\text{Filter(IndexJoin(TableScan(Movie), IndexScan(Cast, Cast.Title = Movie.Title), Cast.Role = \text{"star"}))} \)

There are other possible evaluation plans but they require joining the relation in a different order which is suboptimal (\(\text{Movie} \) is smaller than \(\text{Cast} \)).