Open vs. Closed World Assumption

Closed World Assumption (CWA)
What is not implied by a logic program is false.

Open World Assumption (OWA)
What is not implied by a logic program is unknown.

Scope
- traditional database applications: CWA
- information integration: OWA or CWA

Can negation be allowed inside Datalog rules?
Datalog

Syntax

Rules with negated goals in the body:

\[A_0 : -A_1, \ldots, A_k, \text{not } B_1, \ldots, \text{not } B_m. \]

Example

\[\text{forebear}(X,Y) : \neg \text{anc}(X,Y), \text{not } \text{parent}(X,Y). \]

Generalizing \(T_P \)

\[T_P(I) = \{ A \mid \exists r \in \text{ground}(P). \ r = A : -A_1, \ldots, A_n, \text{not } B_1, \ldots, \text{not } B_m \]
\[\land A_1 \in I \land \cdots \land A_n \in I \land B_1 \notin I \land \cdots \land B_m \notin I \}. \]

Datalog\text{not}: semantics

Semantics

- minimal (Herbrand) models:
 - one or more
 - the right one?
- minimal fixpoints of \(T_P \):
 - none, one, or more than one
 - the right one?
- bottom-up evaluation

Solutions

- restrict programs syntactically: \textit{stratified,}\ ...
- consider multiple logical meanings: \textit{stable models,}\ ...
Stratification [ABW88]

Dependency graph \(pdg(P) \)
- **vertices:** predicates of a \(\text{Datalog}^{\text{not}} \) program \(P \)
- **edges:**
 - a **positive** edge \((p, q) \) if there is a clause in \(P \) in which \(q \) appears in a positive goal in the body and \(p \) appears in the head
 - a **negative** edge \((p, q) \) if there is a clause in \(P \) in which \(q \) appears in a negative goal in the body and \(p \) appears in the head

Stratified \(P \)

No cycle in \(pdg(P) \) contains a negative edge.

Stratification

Mapping \(s \) from the set of predicates in \(P \) to nonnegative integers such that:
- if a positive edge \((p, q) \) is in \(pdg(P) \), then \(s(p) \geq s(q) \)
- if a negative edge \((p, q) \) is in \(pdg(P) \), then \(s(p) > s(q) \)

There is a **polynomial-time** algorithm to determine whether a program is stratified, and if it is, to find a stratification for it.

Stratified Datalog\(^{\text{not}} \): query evaluation

Bottom-up evaluation

1. compute a stratification of a program \(P \)
2. partition \(P \) into \(P_1, \ldots, P_n \) such that
 - each \(P_i \) consisting of all and only rules whose head belongs to a single stratum
 - \(P_1 \) is the lowest stratum
3. evaluate bottom-up \(P_1, \ldots, P_n \) (in that order).

Result

- does not depend on the stratification
- can be semantically characterized in various ways: minimal, perfect...
- is used to compute query results (like \(M_P \))
Expressiveness

Query equivalence
Two queries are equivalent if their semantics defines the same mapping from input databases to output results.

Query language containment
$L_1 \subseteq L_2$ if for every query $Q_1 \in L_1$, there is an equivalent query Q_2 in L_2.

Expressiveness
- Relational Algebra \subseteq Stratified Datalog
- Datalog $\not\subseteq$ Relational Algebra
 - transitive closure
- Relational Algebra $\not\subseteq$ Datalog
 - set difference

Computational complexity

Decision problem
Is a tuple t in the result $Q(D)$ of a query Q applied to a database D?

Data complexity [Var82]
Complexity as a function of the cardinality of the database D:
- fixed: database schema, query Q
- input: database D

Combined complexity
Nothing considered fixed.

Theorem
Data complexity of Stratified Datalog queries is in PTIME.
Stable model semantics [GL88]

M a subset of the Herbrand base of a Datalog

Reduct P^M_g

Obtained from $\text{ground}(P)$ by the Gelfond-Lifschitz transform:
- for every $A \in M$: remove every clause that contains $\text{not } A$ in the body
- for every $A \notin M$: remove $\text{not } A$ from the body of every clause in which it appears.

Stable model

M is a stable model of P if M is the least (Herbrand) model of the reduct P^M_g.

Properties of stable models

- a program can have zero, one, or more stable models
- a stratified program has a single stable model computed by bottom-up evaluation.

Encoding propositional satisfiability [MT99]

Given a CNF formula ϕ with the set of clauses C and the set of propositional variables V.

Set of facts E_ϕ

- $\text{var}(a)$ for every $a \in V$
- $\text{clause}(c)$ for every $c \in C$
- $\text{pos}(c, v)$ if v occurs positively in c
- $\text{neg}(c, v)$ if v occurs negatively in c

Generating all possible truth assignments

(SAT1) $\text{true}(X):- \text{var}(X), \text{not } \text{false}(X)$.
(SAT2) $\text{false}(X):- \text{var}(X), \text{not } \text{true}(X)$.

Clause satisfaction

(SAT3) $\text{sat}(C):- \text{var}(X), \text{clause}(C), \text{true}(X), \text{pos}(C, X)$.
(SAT4) $\text{sat}(C):- \text{var}(X), \text{clause}(C), \text{false}(X), \text{neg}(C, X)$.
(SAT5) $f:- \text{clause}(C), \text{not } \text{sat}(C), \text{not } f$.
Fact

M is a stable model of the program consisting of E_{ϕ} and (SAT1)–(SAT5) iff M contains exactly the following facts for some $U \subseteq V$:

- E_{ϕ}
- $\text{sat}(c)$ for every $c \in C$
- $\text{true}(v)$ for every $v \in U$
- $\text{false}(v)$ for every $v \in V - U$.

Corollary

Data complexity of checking the existence of a stable model of a Datalog$^{\text{not}}$ program is NP-complete.

Querying using stable models

Query answer

A tuple t is a cautious query answer if $\text{query}(t)$ belongs to every stable model of P.

Theorem

Data complexity of computing cautious answers to Datalog$^{\text{not}}$ queries is co-NP-complete.
Towards a Theory of Declarative Knowledge.

M. Gelfond and V. Lifschitz.
The Stable Model Semantics for Logic Programming.

V. W. Marek and M. Truszczynski.
Stable logic programming – an alternative logic programming paradigm.
Also: CoRR cs.LO/9809032.

M. Y. Vardi.
The Complexity of Relational Query Languages.