Open vs. Closed World Assumption

Closed World Assumption (CWA)
What is not implied by a logic program is \textit{false}.

Open World Assumption (OWA)
What is not implied by a logic program is \textit{unknown}.

Scope
- traditional database applications: CWA
- information integration: OWA or CWA

Can negation be allowed inside Datalog rules?
Syntax

Rules with negated goals in the body:

\[A_0 : -A_1, \ldots, A_k, \text{not } B_1, \ldots, \text{not } B_m. \]

Example

\text{forebear}(X,Y):-\text{anc}(X,Y), \text{not parent}(X,Y).

Generalizing \(T_P \)

\[T_P(I) = \{ A \mid \exists r \in \text{ground}(P). r = A : -A_1, \ldots, A_n, \text{not } B_1, \ldots, \text{not } B_m \]
\[\land A_1 \in I \land \cdots A_n \in I \land B_1 \not\in I \land \cdots B_m \not\in I \} \]

Datalog\(^{not}\): semantics

Semantics

- minimal (Herbrand) models:
 - one or more
 - the right one?
- minimal fixpoints of \(T_P \):
 - none, one, or more than one
 - the right one?
- bottom-up evaluation

Solutions

- restrict programs syntactically: \textit{stratified},...
- consider multiple logical meanings: \textit{stable models},...
Dependency graph $pdg(P)$

- **vertices:** predicates of a Datalognot program P
- **edges:**
 - a positive edge (p, q) if there is a clause in P in which q appears in a positive goal in the body and p appears in the head
 - a negative edge (p, q) if there is a clause in P in which q appears in a negative goal in the body and p appears in the head

Stratified P

No cycle in $pdg(P)$ contains a negative edge.

Stratification

Mapping s from the set of predicates in P to nonnegative integers such that:

1. if a positive edge (p, q) is in $pdg(P)$, then $s(p) \geq s(q)$
2. if a negative edge (p, q) is in $pdg(P)$, then $s(p) > s(q)$

There is a polynomial-time algorithm to determine whether a program is stratified, and if it is, to find a stratification for it.

Stratified Datalognot: query evaluation

Bottom-up evaluation

1. compute a stratification of a program P
2. partition P into P_1, \ldots, P_n such that
 - each P_i consisting of all and only rules whose head belongs to a single stratum
 - P_1 is the lowest stratum
3. evaluate bottom-up P_1, \ldots, P_n (in that order).

Result

- does not depend on the stratification
- can be semantically characterized in various ways: minimal, perfect...
- is used to compute query results (like M_P)
Expressiveness

Query equivalence

Two queries are equivalent if their semantics defines the same mapping from input databases to output results.

Query language containment

$L_1 \subseteq L_2$ if for every query $Q_1 \in L_1$, there is an equivalent query Q_2 in L_2.

Expressiveness

- Relational Algebra \subseteq Stratified Datalognot
- Datalog $\not\subseteq$ Relational Algebra
 - transitive closure
- Relational Algebra $\not\subseteq$ Datalog
 - set difference

Computational complexity

Decision problem

Is a tuple t in the result $Q(D)$ of a query Q applied to a database D?

Data complexity [Var82]

Complexity as a function of the cardinality of the database D:
- fixed: database schema, query Q
- input: database D

Combined complexity

Nothing considered fixed.

Theorem

Data complexity of Stratified Datalognot queries is in PTIME.
Stable model semantics [GL88]

M a subset of the Herbrand base of a Datalog program P.

Reduct P^M_g

Obtained from $\text{ground}(P)$ by the Gelfond-Lifschitz transform:
- for every $A \in M$: remove every clause that contains $\text{not } A$ in the body
- for every $A \not\in M$: remove $\text{not } A$ from the body of every clause in which it appears.

Stable model

M is a stable model of P if M is the least (Herbrand) model of the reduct P^M_g.

Properties of stable models

- a program can have zero, one, or more stable models
- a stratified program has a single stable model computed by bottom-up evaluation.

Encoding propositional satisfiability [MT99]

Given a CNF formula ϕ with the set of clauses C and the set of propositional variables V.

Set of facts E_ϕ

- $\text{var}(a)$ for every $a \in V$
- $\text{clause}(c)$ for every $c \in C$
- $\text{pos}(c, v)$ if v occurs positively in c
- $\text{neg}(c, v)$ if v occurs negatively in c

Generating all possible truth assignments

(SAT1) $\text{true}(X) :- \text{var}(X), \text{not } \text{false}(X)$.
(SAT2) $\text{false}(X) :- \text{var}(X), \text{not } \text{true}(X)$.

Clause satisfaction

(SAT3) $\text{sat}(C) :- \text{var}(X), \text{clause}(C), \text{true}(X), \text{pos}(C, X)$.
(SAT4) $\text{sat}(C) :- \text{var}(X), \text{clause}(C), \text{false}(X), \text{neg}(C, X)$.
(SAT5) $f :- \text{clause}(C), \text{not } \text{sat}(C), \text{not } f$.
Fact

M is a stable model of the program consisting of E_{ϕ} and (SAT1)-(SAT5) iff M contains exactly the following facts for some $U \subseteq V$:

- E_{ϕ}
- $\text{sat}(c)$ for every $c \in C$
- $\text{true}(v)$ for every $v \in U$
- $\text{false}(v)$ for every $v \in V - U$.

Corollary

Data complexity of checking the existence of a stable model of a Datalognot program is NP-complete.

Querying using stable models

Query answer

A tuple t is a cautious query answer if $\text{query}(t)$ belongs to every stable model of P.

Theorem

Data complexity of computing cautious answers to Datalognot queries is co-NP-complete.
Towards a Theory of Declarative Knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,

M. Gelfond and V. Lifschitz.
The Stable Model Semantics for Logic Programming.

V. W. Marek and M. Truszczynski.
Stable logic programming – an alternative logic programming paradigm.
Also: CoRR cs.LO/9809032.

M. Y. Vardi.
The Complexity of Relational Query Languages.