XPath

Data model

- tree-based
- nodes: root, element, attribute, text,...
- document order: left-to-right prefix traversal

Path expression

- describes a set of paths in a document
- returns a sequence of nodes in document order
- evaluated in a context:
 - node
 - position
 - size
- absolute (starting at root) or relative
- consists of steps separated by /
- wildcards
- union (|), intersection, difference
XPath axes

axis::nodeTest stepQualifiers

- **axis**:
 - **forward**: child, descendant, following-sibling, following, self, descendant-or-self
 - **backward**: parent, ancestor, preceding-sibling, preceding, ancestor-or-self
 - **attribute**

- **node test**: name test (name or wildcard), kind test

- **step qualifiers**: predicate expressions (in square brackets)

Abbreviated syntax

1. **child** is the default axis, can be omitted
2. The attribute axis can be abbreviated to @
3. // is short for /descendant-or-self::node()/
4. . is short for self::node()
5. ../ is short for parent::node()
6. A positive integer K is short for [position()=K]

Integrity constraints in XML Schema

Keys

```xml
<(( key | unique) name=KeyNname>
<selector xpath=Path/>
<field xpath=Path1/>
...
<field xpath=PathN/>
</key>
```

Foreign keys

```xml
<keyref name=RefName refer=KeyNname>
<selector xpath=Path/>
<field xpath=Path1/>
...
<field xpath=PathN/>
</keyref>
```
XQuery

Features

- functional
- compositional: expressions can be nested arbitrarily
- recursion
- declarative: influenced by SQL (and OQL)

XQuery expressions

- Constants: numbers, strings,...
- Variables
- XPath expressions
- Element/attribute constructors
- Operators and functions: arithmetic,...
- FLWOR expressions
- Quantifiers
- Aggregation
- User-defined functions

FLWOR expressions

```xml
for variableRangeSpecifications
let variableDefinitions
where condition
order by orderExpression
return resultExpression
```

User-defined functions

```xml
declare function Name(Arguments)
as Type
{Expression}
```
Storing XML documents in relational databases

Storing nodes and edges of the document tree

- a binary edge relation
- implementing XPath requires recursion (SQL3)

Encoding the tree structure using ranges

- range of child \subset range of parent
- queries w/o recursive functions can be translated to SQL2