We’ve done

- Dynamic Programming
 - Assembly-line scheduling
 - Optimal Binary Search Trees

Now

- All-Pairs Shortest-Paths

Next

- NP-Completeness
The All Pairs Shortest Paths Problem

Given a directed graph $G = (V, E)$ and a weight function $w : E \rightarrow \mathbb{R}$.

We assume (for now) there is no negative-weight cycle.

Input: a weight matrix $W = (w_{ij})$, where

$$w_{ij} = \begin{cases}
 w(i,j) & \text{if } ij \in E \\
 0 & \text{if } i = j \\
 \infty & \text{otherwise}
\end{cases}$$

Output:

- a **distance matrix** $D = (d_{ij})$, where d_{ij} is the weight of a shortest path from i to j, and it is ∞ otherwise.

- a **predecessor matrix** $\Pi = (\pi_{ij})$, where π_{ij} points to j’s previous vertex on a shortest path from i to j, and NIL if j is not reachable from i or $j = i$.
A Dynamic Programming Solution

- Let $d_{ij}^{(m)}$ denote the “length” (i.e. weight) of a shortest path from i to j with at most m edges ($m \geq 1$)

- Let $D^{(m)} = (d_{ij}^{(m)})$ (a matrix)

- As there is no negative cycle, $D = D^{(n-1)}$ (why?)

- Also, $D^{(1)} = W$ (why?)

Key observation: a shortest path from i to j with at most m edges

- **either** has $m - 1$ edges or less, in which case
 $$d_{ij}^{(m)} = d_{ij}^{(m-1)},$$

- **or** has exactly m edges including some kj, in which case
 $$d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}$$

Hence,

$$d_{ij}^{(m)} = \min_{k=1..n,k\neq j} \{d_{ij}^{(m-1)}, d_{ik}^{(m-1)} + w_{kj}\}$$

$$= \min_{k=1..n} \{d_{ik}^{(m-1)} + w_{kj}\}$$

(note $w_{jj} = 0.$)
Pseudo Code

We can use a 3-dimensional table to hold the variables $d_{ij}^{(m)}$, and fill the table out “layer” by “layer” starting with $m = 1$:

APSP(W, n)

1: $D^{(1)} \leftarrow W$ // this actually takes $O(n^2)$

2: for $m \leftarrow 2$ to $n - 1$ do

3: for $i \leftarrow 1$ to n do

4: for $j \leftarrow 1$ to n do

5: $d_{ij}^{(m)} \leftarrow \min_{k=1}^{n} \{d_{ik}^{(m-1)} + w_{kj}\}$

6: end for

7: end for

8: end for

9: Return $D^{(n-1)}$ // the last “layer”

$O(n^4)$-time, $O(n^3)$-space.

Space can be reduced to $O(n^2)$ since one layer only depends on the previous. We only need to use two layers and use them alternatively.
More Observations

Ignoring the outer loop, replace min by \sum and $+$ by \cdot, the previous code becomes

1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow 1$ to n do
3: $d_{ij}^{(m)} \leftarrow \sum_{k=1}^{n} d_{ik}^{(m-1)} \cdot w_{kj}$
4: end for
5: end for

- This is like $D^{(m)} \leftarrow D^{(m-1)} \odot W$, where \odot is identical to matrix multiplication, except that instead of \sum we do min, and instead of \cdot we do $+$
- $D^{(n-1)}$ is just $W \odot W \cdots \odot W$, $n - 1$ times.
- It is easy (?) to show that \odot is associative
- Hence, $D^{(n-1)}$ can be calculated from W in $O(\lg n)$ steps by “repeated squaring”, for a total running time of $O(n^3 \lg n)$

Lastly, the Π matrix can be updated after each step of the algorithm
Floyd-Warshall Algorithm

The key:

Let \(d_{ij}^{(k)} \) be the length of a shortest path from \(i \) to \(j \), all of whose intermediate vertices are in the set

\[
[k] := \{1, \ldots, k\}. 0 \leq k \leq n
\]

We agree that \([0] = \emptyset\), so that \(d_{ij}^{(0)} \) is the length of a shortest path between \(i \) and \(j \) with no intermediate vertex.

Then, we get the following recurrence:

\[
d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min \left\{ \left(d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right), d_{ij}^{(k-1)} \right\} & \text{if } k \geq 1 \end{cases}
\]

The matrix we are looking for is \(D = D^{(n)} \).
Pseudo Code for Floyd-Warshall Algorithm

\textbf{FLOYD-WARSHALL}(W, n)

1: \(D^{(0)} \leftarrow W \)

2: \textbf{for} \(k \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}

3: \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}

4: \textbf{for} \(j \leftarrow 1 \) \textbf{to} \(n \) \textbf{do}

5: \(d_{i,j}^{(k)} \leftarrow \min\{(d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}), d_{i,j}^{(k-1)}\} \)

6: \textbf{end for}

7: \textbf{end for}

8: \textbf{end for}

9: \textbf{Return} \(D^n \) \text{ // the last “layer”} \\

Time: \(O(n^3) \), space: \(O(n^3) \).
Constructing the \(\Pi \) matrix

The \(\Pi \) matrix can also be updated on-the-fly with the following observation:

\[
\pi_{ij}^{(0)} = \begin{cases}
\text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty \\
i & \text{otherwise}
\end{cases}
\]

and for \(k \geq 1 \)

\[
\pi_{ij}^{(k)} = \begin{cases}
\pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\
\pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}
\end{cases}
\]

Question: is it correct if we do

\[
\pi_{ij}^{(k)} = \begin{cases}
\pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} < d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\
\pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \geq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}
\end{cases}
\]

Finally, \(\Pi = \Pi^{(n)} \).
Floyd-Warshall with less space

FLOYD-WARSHALL-2(\(W, n\))

1: \(D \leftarrow W\)
2: \(\text{for } k \leftarrow 1 \text{ to } n \text{ do}\)
3: \(\quad \text{for } i \leftarrow 1 \text{ to } n \text{ do}\)
4: \(\quad \quad \text{for } j \leftarrow 1 \text{ to } n \text{ do}\)
5: \(\quad \quad \quad d_{ij} \leftarrow \min\{(d_{ik} + d_{kj}), d_{ij}\}\)
6: \(\quad \text{end for}\)
7: \(\text{end for}\)
8: \(\text{end for}\)
9: Return \(D\)

Time: \(O(n^3)\), space: \(O(n^2)\).

Why does this work?
Transitive Closure of a Graph

- Given a directed graph $G = (V, E)$

- We’d like to find out whether there is a path between i and j for every pair i, j.

- $G^* = (V, E^*)$, the transitive closure of G, is defined by

$$ij \in E^* \text{ iff there is a path from } i \text{ to } j \text{ in } G.$$

- Given the adjacency matrix A of G

 ($a_{ij} = 1$ if $ij \in E$, and 0 otherwise)

- Compute the adjacency matrix A^* of G^*

Questions:

- What’s the first thing that comes to mind?

- What’s the second thing?
A DP Algorithm Based on Floyd Warshall

Let \(a_{ij}^{(k)} \) be a boolean variable, indicating whether there is a path from \(i \) to \(j \) all of whose intermediate vertices are in the set \([k]\).

We want \(A^* = A^{(n)} \).

Note that

\[
a_{ij}^{(0)} = \begin{cases}
\text{TRUE} & \text{if } ij \in E \text{ or } i = j \\
\text{FALSE} & \text{otherwise}
\end{cases}
\]

and for \(k \geq 1 \)

\[
a_{ij}^{(k)} = a_{ij}^{(k-1)} \lor (a_{ik}^{(k-1)} \land a_{kj}^{(k-1)})
\]

Time: \(O(n^3) \), space \(O(n^3) \)

So what’s the advantage of doing this instead of Floyd-Warshall?