We’ve done

- Matroid Theory
- Task scheduling problem (another matroid example)
- Dijkstra’s algorithm (another greedy example)

Now

- Dynamic Programming
 - Matrix Chain Multiplication
 - Longest Common Subsequence

Next

- Dynamic Programming
 - Assembly-line scheduling
 - Optimal Binary Search Trees
Matrix Chain Multiplication (MCM) Problem

Given $A_{10 \times 100}$, $B_{100 \times 25}$, then calculating AB requires $10 \cdot 100 \cdot 25 = 25,000$ multiplications.

Given $A_{10 \times 100}$, $B_{100 \times 25}$, $C_{25 \times 4}$, then it is true that

$$(AB)C = A(BC) = ABC.$$

- AB requires 25,000 multiplications
- $(AB)C$ requires $10 \cdot 25 \cdot 4 = 1000$ more multiplications
- totally 26,000 multiplications

On the other hand

- BC requires $100 \cdot 25 \cdot 4 = 10,000$ multiplications
- $A(BC)$ requires $10 \times 100 \times 4 = 4000$ more multiplications
- totally 14,000 multiplications
MCM (cont)

If there are 4 matrices A, B, C, D, there are 5 ways to parenthesize the product $ABCD$:

$$(A(B(CD))), (A((BC)D)), ((AB)(CD)), ((A(BC))D), (((AB)C)D)$$

In general, given n matrices:

A_1 of dimension $p_0 \times p_1$

A_2 of dimension $p_1 \times p_2$

\vdots

A_n of dimension $p_{n-1} \times p_n$

There are totally

$$\frac{1}{n+1} \binom{2n}{n} = \frac{1}{n+1} \frac{(2n)!}{n!n!} = \Omega \left(\frac{4^n}{n^{3/2}} \right)$$

ways to parenthesize the product.

Find a parenthesization with the least number of multiplications
Some Observations

- Let’s try to find the optimal cost first

- Suppose we split between A_k and A_{k+1}, then the parenthesization of $A_1 \ldots A_k$ and $A_{k+1} \ldots A_n$ have to also be optimal: optimal substructure.

- Let $c[1, k]$ and $c[k + 1, n]$ be the optimal costs for the subproblems, then the cost of splitting at $k, k + 1$ is

$$c[1, k] + c[k + 1, n] + p_0 p_k p_n$$

because

$A_1 \ldots A_k$ has dimension $p_0 \times p_k$

$A_{k+1} \ldots A_n$ has dimension $p_k \times p_n$

- The optimal cost $c[1, n]$ is

$$c[1, n] = \min_{1 \leq k < n} (c[1, k] + c[k + 1, n] + p_0 p_k p_n)$$

- Hence, in general we need $c[i, j]$ for $i < j$:

$$c[i, j] = \min_{i \leq k < j} (c[i, k] + c[k + 1, j] + p_{i-1} p_k p_j)$$
A Recursive Solution

We need the base cases also:

\[c[i, j] = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k < j} (c[i, k] + c[k + 1, j] + p_{i-1}p_kp_j) & \text{if } i < j
\end{cases} \]

Opt-MCM\((p, i, j)\)

1: if \(i = j \) then
2: return 0;
3: else
4: min-so-far \(\leftarrow\) \(\infty\);
5: for \(k \leftarrow i \) to \(j - 1 \) do
6: \(c \leftarrow \) Opt-MCM\((i, k)\) + Opt-MCM\((k + 1, j)\) + \(p_{i-1}p_kp_j\)
7: if min-so-far \(> c\) then
8: min-so-far \(\leftarrow\) \(c\);
9: end if
10: end for
11: return min-so-far;
12: end if

Running time is exponential for the same reason FibonacciA was exponential. (What’s the recurrence?)
A Bottom Up Solution

- We use a table to store \(c[i, j], i \leq j \).
- For each \(l = 1 \) to \(n - 1 \), recursively calculate the entries \(c[i, i + l] \).

MCM-Order\((p, n)\)
1: for \(i = 1 \) to \(n \) do
2: \(c[i, i] \leftarrow 0 \) // base cases
3: end for
4: for \(l = 1 \) to \(n - 1 \) do
5: for \(i \leftarrow 1 \) to \(n - l \) do
6: \(j \leftarrow i + l; // \) not really needed, just to be clearer
7: \(c[i, j] \leftarrow \infty; \)
8: for \(k \leftarrow i \) to \(j - 1 \) do
9: \(t \leftarrow c[i, k] + c[k + 1, j] + p_{i-1}p_kp_j; \)
10: if \(c[i, j] > t \) then
11: \(c[i, j] \leftarrow t; \)
12: end if
13: end for
14: end for
15: end for
16: return \(c[1, n]; \)
Also Record the Splitting Points

Use $s[i, j]$ to store the optimal splitting point k:

MCM-Order(p, n)

1. for $i = 1$ to n do
2. $c[i, i] \leftarrow 0$ // base cases
3. end for
4. for $l = 1$ to $n - 1$ do
5. for $i \leftarrow 1$ to $n - l$ do
6. $j \leftarrow i + l; // not really needed, just to be clearer$
7. $c[i, j] \leftarrow \infty;$
8. for $k \leftarrow i$ to $j - 1$ do
9. $t \leftarrow c[i, k] + c[k + 1, j] + p_{i−1}p_kp_j ;$
10. if $c[i, j] > t$ then
11. $c[i, j] \leftarrow t;$
12. $s[i, j] \leftarrow k;$
13. end if
14. end for
15. end for
16. end for
17. return c;
The Actual MCM

Knowing the splitting points, it is now easy:

Matrix-Chain-Multiply\((A, i, j, s)\)

1. \textbf{if} \(j > i\) \textbf{then}
2. \hspace{1em} \(k \leftarrow s[i, j];\)
3. \hspace{1em} \(X \leftarrow \text{Matrix-Chain-Multiply}(A, i, k, s);\)
4. \hspace{1em} \(Y \leftarrow \text{Matrix-Chain-Multiply}(A, k + 1, j, s);\)
5. \hspace{1em} \textbf{return} \(XY;\)
6. \textbf{else}
7. \hspace{1em} \textbf{return} \(A_i;\) \hspace{0.5em} // \textit{i = j} in this case
8. \textbf{end if}
Analysis of MCM’s Algorithm

- We also are concerned about space, not only time
- Space needed is $O(n^2)$ for the tables c and s
- Suppose the inner-most loop takes about 1 time unit, then the running time is

$$
\sum_{l=1}^{n-1} \sum_{i=1}^{n-l} l = \sum_{l=1}^{n-1} l(n - l)
$$

$$
= n \sum_{l=1}^{n-1} l - \sum_{l=1}^{n-1} l^2
$$

$$
= n \frac{n(n - 1)}{2} - \frac{(n - 1)n(2(n - 1) + 6)}{6}
$$

$$
= \Theta(n^3)
$$
Memoization

Memoized-MCM-Order \((p, n)\)

1. \textbf{for} \(i \leftarrow 1\) \textbf{to} \(n\) \textbf{do}
2. \(c[i, j] \leftarrow \infty;\)
3. \textbf{end for}
4. Lookup\((p, 1, n)\);

Lookup \((p, i, j)\)

1. \textbf{if} \(c[i, j] < \infty\) \textbf{then}
2. \hspace{1em} return \(c[i, j]\); // it’s calculated!! Time saved right here
3. \textbf{end if}
4. \textbf{if} \(i = j\) \textbf{then}
5. \hspace{1em} \(c[i, i] \leftarrow 0;\)
6. \textbf{else}
7. \hspace{1em} \textbf{for} \(k \leftarrow i\) \textbf{to} \(j - 1\) \textbf{do}
8. \hspace{2em} \(t \leftarrow \text{Lookup}(p, i, k) + \text{Lookup}(p, k + 1, n) +\)
9. \hspace{3em} \(p_{i-1}p_kp_j;\)
10. \hspace{2em} \textbf{if} \(t < c[i, j]\) \textbf{then}
11. \hspace{3em} \hspace{1em} \(c[i, j] \leftarrow t;\quad s[i, j] \leftarrow k;\)
12. \hspace{2em} \textbf{end if}
13. \hspace{1em} \textbf{end for}
14. \textbf{end if}
15. \textbf{return} \(c[i, j];\)
Longest Common Subsequence (LCS) Problem

\[X = t h i s i s c r a z y \]
\[Z = h i c a z y \]

\(Z \) is a subsequence of \(X \).

\[X = t h i s i s c r a z y \]
\[Y = b u t i n t e r e s t i n g \]

So, \(Z = [t, i, s, i] \) is a common subsequence of \(X \) and \(Y \)

Given 2 sequences \(X \) and \(Y \) of lengths \(m \) and \(n \), respectively

Find a common subsequence \(Z \) of longest length
Analyzing the LCS Problem

- Somehow, find a recursive formula for the objective function

- Suppose $X = [x_1, \ldots, x_m], Y = [y_1, \ldots, y_n]$

Key observation: optimal substructure

Theorem 1. Let $LCS(X, Y)$ be the length of a LCS of X and Y

- If $x_m = y_n$, then
 \[LCS(X, Y) = 1 + LCS([x_1, \ldots, x_{m-1}], [y_1, \ldots, y_{n-1}]) \]

- If $x_m \neq y_n$, then either
 \[LCS(X, Y) = LCS([x_1, \ldots, x_m], [y_1, \ldots, y_{n-1}]) \]
 or
 \[LCS(X, Y) = LCS([x_1, \ldots, x_{m-1}], [y_1, \ldots, y_n]) \]

 In other words, $LCS(X, Y)$ is the max of the two in this case.
Conclusions From the Theorem

- For $0 \leq i \leq m$, $0 \leq j \leq n$, let

 \[
 X_i = [x_1, \ldots, x_i] \\
 Y_j = [y_1, \ldots, y_j]
 \]

- If $x_m = y_n = z$, then a LCS Z of X and Y can be found by computing a LCS Z' of X_{m-1} and Y_{n-1}, and append z at the end, i.e. $Z = [Z', z]$.

- If $x_m \neq y_n$, then let Z_1 be a LCS of X_{m-1} and Y_n, Z_2 be a LCS of X_m and Y_{n-1}.

 Z is then either Z_1 or Z_2, whichever is longer.

- Let $c[i,j] = LCS[X_i, Y_j]$, then

 \[
 c[i,j] = \begin{cases}
 0 & \text{if } i \text{ or } j \text{ is 0} \\
 1 + c[i - 1, j - 1] & \text{if } x_i = y_j \\
 \max(c[i - 1, j], c[i, j - 1]) & \text{if } x_i \neq y_j
 \end{cases}
 \]

 Hence, $c[i,j]$ in general depends on one of three entries: the North entry $c[i - 1, j]$, the West entry $c[i, j - 1]$, and the NorthWest entry $c[i - 1, j - 1]$.
Computing LCS length

We maintain a cost table $c[0..m, 0..n]$ of optimal lengths, and a “direction” table $d[1..m, 1..n]$ of $\{N, W, NW\}$ recording where $c[i, j]$ comes from.

LCS-Length(X, Y, m, n)

1: $c[i, 0] \leftarrow 0$ for each $i = 0, \ldots, m$;
2: $c[0, j] \leftarrow 0$ for each $j = 0, \ldots, n$;
3: **for** $i \leftarrow 1$ **to** m **do**
4: **for** $j \leftarrow 1$ **to** n **do**
5: \[\text{if } x_i = y_j \text{ then}\]
6: \[c[i, j] \leftarrow 1 + c[i - 1, j - 1];\]
7: \[d[i, j] \leftarrow NW;\]
8: \[\text{else}\]
9: \[\text{if } c[i - 1, j] > c[i, j - 1] \text{ then}\]
10: \[c[i, j] \leftarrow c[i - 1, j];\]
11: \[d[i, j] \leftarrow N;\]
12: \[\text{else}\]
13: \[c[i, j] \leftarrow c[i, j - 1];\]
14: \[d[i, j] \leftarrow W;\]
15: \[\text{end if}\]
16: \[\text{end if}\]
17: \[\text{end for}\]
18: \[\text{end for}\]
Constructing an LCS

Suppose Z is a global array.
(The first call is Construct-LCS(Z, m, n).)

Construct-LCS(Z, i, j)

1: if $i = 0$ or $j = 0$ then
2: return Z;
3: else
4: $k \leftarrow c[i, j]$;
5: if $d[i, j] = NW$ then
6: $Z[k] \leftarrow x_i$; // which is the same as $Y[j]$
7: Construct-LCS($Z, i - 1, j - 1$);
8: end if
9: if $d[i, j] = N$ then
10: Construct-LCS($Z, i - 1, j$);
11: end if
12: if $d[i, j] = W$ then
13: Construct-LCS($Z, i, j - 1$);
14: end if
15: end if
Space and Time Analysis

- Filling out the c and d tables take $\Theta(mn)$-time, which is also the running time of LCS-Length.

- The space requirement is also $\Theta(mn)$-time.

- Construct-LCS takes $O(m + n)$ (why?)

Note:

- We don’t really need the direction table (why?)

- Memoizing this is quite simple too (homework)
A General Look at Dynamic Programming

Step 1

- Identify the sub-problems
- The sub-problems of sub-problems are overlapping
- The total number of sub-problems is a polynomial in input size (why do we need this?)

Step 2

- Write a recurrence for the objective function
- Carefully identify the base cases

Step 3

- Investigate the recurrence to see how to fill out the cost table in a “bottom-up” fashion
- Design appropriate data structure(s) for constructing an optimal solution later on

Step 4 Pseudo Code

Step 5 Analysis of time and space