Agenda

- The rest of the semester: network security
- Focus on 3 major problems (inter-related)
 - Distributed Denial of Service (DDoS)
 - Buffer-Overflow
 - Worms
What is Denial of Service?

- Technically
 - DoS attack occurs when the attacker tries to prevent legitimate users from using a service by overflowing some resource(s) (CPU cycles, memory, bandwidth, ...) at the target.
 - DDoS is DoS from multiple sources.

- What’s an example of DoS in everyday’s life?

- What’s an example of DDoS in everyday’s life?
A Selective History of (D)DoS Attacks (1)

- **1996**: first appearance of SYN-flooding attacks
- **1997**: large DoS on IRC networks
 - Tools: *teardrop, boink, bonk* (attack Windows)
 - Undernet’s IRC servers taken down by a Romanian teenage with SYN-flooding
 - Other attacks took advantage of TCP/IP implementation bugs (in fragmentation/defragmentation)
 - *Smurf attacks* (also called *reflection attack*) started to appear. Idea: bounce packets off various networks toward the target
- **1998**: tools for *OS fingerprinting* started to appear
A Selective History of (D)DoS Attacks (2)

- **1999**: first large scale use of new DoS tools
 - Trinoo, Tribe Flood Network (TFN, TFN2K), Stacheldraht, Shaft
 - Newer versions of these are still in use today
 - Targets were mostly IRC servers or clients
 - U. of Minnesota’s IRC server attacked with a DDoS [tons of UDP packets with 2-byte payload from about 4000 hosts], network unavailable for almost 3 days (*I was at U of M at the time!*)
 - CERT organized a workshop in response, resulted in a very important report

- Remember, this was near Y2K, lots of panicked people
A Selective History of (D)DoS Attacks (3)

2000: many attacks on famous servers and networks

- Jan 18, 2000: ISP Oz.Net in Seattle got hit with a Smurf
- Feb 2000: eBay, Yahoo, E*Trade, Buy.com, Amazon.com, Excite.com, CNN all hit by another Smurf attack
- Even FBI’s own website got hit by a DDoS in Feb

2001:

- futuresite.register.com hit by a reflection attack from DNS servers around the world, this lasted for about a week
- Microsoft got hit a few times, some unsuccessfully

2002: all 13 DNS root servers were attacked for only an hour (then it stopped by itself)
A Selective History of (D)DoS Attacks (4)

- **2003:**
 - Spammers went distributed, started attacking anti-spam websites
 - Some attacks were made with extortion in mind
 - During Iraq war, Al Jazeera’s website was hit, their DNS name was hijacked and redirected to a pro-American website
 - SCO’s website hit (after its legal action against Linux)

- **2004:**
 - Agobot and Phatbot became popular
Basic DDoS Attack Strategy

- From attacker’s machine:
 - Need IP spoofing
 - Need very powerful machine & huge bandwidth

- DDoS
 - Probably still want IP spoofing
 - Recruit a large number of agent (slave) machines
 - Infect the slave machines with attack code (can be fully automated)
 - Run attack codes
A Taxonomy of DDoS Attacks

Can be classified from multiple perspectives

[Mirkovic, Martin, Reiher – SIGCOMM 2004]

- Degree of automation
- Exploited vulnerability
- Attack rate dynamics
- Impact
1. Degree of Automation

- **Manual**: these are old, primitive

- **Semi-automatic**:
 - Automatic scripts to compromise slave machines
 - Manually indicate a target and run attack codes
 - *Attacks with direct communications*: slave and handler machines communicate directly during attacks (hard-coded IP addresses in malicious codes)
 - *Attacks with indirect communications*: one or two levels of indirect communication to collaborate the attack, e.g. communications done via IRC channels which are somewhat anonymous

- **Automatic**: time & target pre-programmed, no need for communication to trigger
Scanning and Propagation Mechanisms

- To (semi-) automatically *recruit* slave machines, attack code often needs to do scanning and propagating

- Scanning: to identify potential slaves
 - Strategies: random (Code Red), hit list, topological (all email worms), permutation (not yet deployed), local-subnet (Code Red II and Nimda)

- Propagation mechanism
 - Central source propagation (li0n worm)
 - Back-chaining propagation (Ramen, Morris worms)
 - Autonomous propagation (Code Red, Warhol, and most email worms)
2. Exploited Vulnerability

- **Brute-force attacks**
 - Filterable: ICMP Smurf, UDP flood
 - Non-filterable: HTTP request flood, DNS request flood

- **Protocol attacks**
 - SYN-flood
 - CGI request attack: consume CPU time by issuing multiple CGI requests
 - Authentication server attack: authenticating takes much longer than generating a bogus signature
3. Attack Rate Dynamics

- Continuous rate
- Variable rate – makes detection harder
 - Increasing rate
 - Fluctuating rate
4. Impact

- **Disruptive attacks**
 - Completely deny the victim’s service

- **Degrading attacks**
 - Consume some portion of the victim’s resource
 - It could remain undetected for a long period of time (Think about the economics involved)
A Taxonomy of DDoS Defense Mechanisms

Classification can be done by

- Activity level
- Deployment location
1. Deployment Location

- Victim-Network
 - Resource accounting
 - Protocol security

- Intermediate Networks
 - Intermediate networks provide infrastructural service to a large number of hosts; victims contact service for protection and/or compensation
 - E.g., push-back and trace-back techniques

- Source-Network
 - Prevent the network from generating the attack
 - Low level of motivation for deployment
2. Activity Level - Preventive

- Attack prevention
 - System security: anti-virus, software patches, firewalls, access lists, capability-based systems, …
 - Protocol security: design better protocols

- DoS prevention
 - Resource accounting: avoid identity theft, provide legitimate users with fair services, …
 - Resource multiplication: over-provision resources (multiple servers, more bandwidth, …)
2. Activity Level – Reactive

- Detection strategy
 - Pattern attack detection: signature-based
 - Anomaly attack detection: track system usage for anomalies, often suffered from false positives vs. false negatives problem
 - Hybrid attack detection: pattern + anomaly
 - Third party attack detection: trace-back mechanisms

- Response strategy
 - Slave identification: trace-back techniques
 - Rate-limiting: limit rate on detected stream
 - Filtering: completely filter out the bad stream
 - Reconfiguration: reconfigure the victim’s network or intermediate networks (say – overlay networks)
2. Activity Level – Cooperation Level

- **Autonomous**
 - Independent attack detection and response (firewall, IDS)

- **Cooperative**
 - Can operate autonomously, but can improve performance with cooperation
 - Cooperate with other entities for detection & response (e.g., push-back mechanism)

- **Interdependent**
 - Require full cooperation of other entities (e.g., trace-back technique)