This Week’s Agenda

Last Time

- CTMC

Today

- A Primer on Queueing Theory
Denote the system by $A/B/k/c - S$, where

- A is the inter-arrival time distribution
- B is the service time distribution at each server
- k is the number of servers
- c is the queue capacity (omit if ∞)
- S is the service discipline (omit if FIFO)

Some common distributions of inter-arrival and service times:

- M: Markov, i.e. exponential; e.g. $M/M/1$, $M/M/k$
- D: Deterministic; e.g. $M/D/k$
- E_m: Erlang-m (common with phone call arrivals at toll offices)
- H_m: Hyper-m
- G: a general distribution
Basic Parameters and Performance Measures

Input Parameters

- Packet arrival processes (from the outside)
- Distributions of service times at servers
- Service disciplines at servers: FIFO, LIFO, Random, Priorities (rush order first, shortest processing time first, ...)
- Service capacity (nodes have single or multiple servers)
- Queue capacity (finite or infinite)

Output Performance Measures

- Distributions of waiting times at nodes
- Distributions of sojourn times (wait + service times)
- Distributions of number of packets at nodes
- Distributions of busy times at servers
- Packet loss rates
- Throughput
- ...
Common Parameters and Measures for $A/B/k/c$ Systems

The averages

- λ: mean arrival rate
- μ: mean service time at each server
- $\rho = \lambda/\mu$: traffic intensity
- \bar{N}: mean number of packets in the system
- \bar{N}_q: mean number of packets in the queue
- \bar{W}: mean waiting time overall, also called response time
- \bar{W}_q: mean waiting time in the queue
- r: throughput (departure rate)
- u: utilization

The random variables

- $N(t)$: number of packets in the system at time t
- \bar{N}: number of packets in the system at steady state
- τ: invariant distribution (if any) of $\{N(t)\}_{t \geq 0}$
Little’s Formulas

Think: each packet pays money to wait and/or to be serviced.

\[
\text{Mean rate system earns} = \lambda \times \text{Mean amount a packet pays}
\]

The following are called Little’s Formulas

- Each packet pays 1$ per unit time in the system, then
 \[
 \bar{N} = \lambda \cdot \bar{W}
 \]

- Each packet pays 1$ per unit time in the queue, then
 \[
 \bar{N}_q = \lambda \cdot \bar{W}_q
 \]
The $M/M/1$ Queue

- A BDP with constant birth rate λ, constant death rate μ

- Stability condition

\[C = \sum_{n=0}^{\infty} \rho^n < \infty \text{ iff } \rho < 1 \text{ iff } \rho \lambda < \mu \]

- Steady state probabilities

\[\tau_n = \frac{1}{C} \rho^n = (1 - \rho) \rho^n \quad n \geq 0 \]

- Fraction of time system has n packets is $\tau_n (\lambda + \mu)$

- It then follows that

\[\Pr[N \geq m] = 1 - \sum_{n=0}^{m-1} \tau_n = \rho^m \]

\[\bar{N} = \sum n \tau_n = \frac{\rho}{1 - \rho} \]

\[\bar{W} = \frac{\bar{N}}{\lambda} = \frac{1}{\mu - \lambda} \]

\[\bar{W}_q = \bar{W} - \frac{1}{\mu} = \frac{\rho}{\mu - \lambda} \]

\[r = (1 - \tau_0) \mu = \lambda \]

\[u = 1 - \tau_0 = \rho \]
$M/M/1$: Some Performance Graphing

![Graph](image)

- Mean number of packets in the system vs. Utilization
- Mean Response Time vs. Utilization

$x/(1-x)$

$1/(1-x)$
The $M/M/k$ Queue

- This is a birth and death process with constant birth rate λ and death rates

$$\mu_i = \begin{cases}
i \mu & 1 \leq i \leq k \\
\kappa \mu & i > k \end{cases}.$$

- The stability condition is

$$C = \sum_{n=0}^{k-1} \frac{\rho^n}{n!} + \frac{\rho^k}{k!} \sum_{i=0}^{\infty} \left(\frac{\rho}{k} \right)^i < \infty,$$

which holds iff $\rho < k$.

- At equilibrium,

$$\tau_0 = \left[\sum_{n=0}^{k-1} \frac{\rho^n}{n!} + \frac{\rho^k}{k!} \frac{1}{1 - \rho/k} \right]^{-1} \tau_0 \frac{\rho^n}{n!} \frac{1}{1 - \rho/k}$$

$$\tau_n = \begin{cases} \tau_0 \frac{\rho^n}{n!} & 1 \leq n \leq k \\
\tau_0 \frac{\rho^n}{k! k^{n-k}} & n > k \end{cases}$$
The $M/M/1/c$ Queue

- This is a birth and death process with constant birth rate λ and constant death rate μ, state space $\{0, 1, \ldots, c\}$

- If $\rho \neq 1$,
 \[
 \tau_n = \begin{cases}
 \rho^n \frac{(1-\rho)}{1-\rho^{c+1}} & n \leq c \\
 0 & n > c
 \end{cases}
 \]

- If $\rho = 1$,
 \[
 \tau_n = \begin{cases}
 \frac{1}{c+1} & n \leq c \\
 0 & n > c
 \end{cases}
 \]

- Thus,
 \[
 \tilde{N} = \begin{cases}
 \frac{\rho}{1-\rho} - \frac{c+1}{1-\rho^{c+1}} \rho^{c+1} & \rho \neq 1 \\
 c/2 & \rho = 1
 \end{cases}
 \]

- Loss probability
 \[
 p_{\text{loss}} = \tau_c = \begin{cases}
 \rho^n \frac{(1-\rho)}{1-\rho^{c+1}} & \rho \neq 1 \\
 \frac{1}{c+1} & \rho = 1
 \end{cases}
 \]
$M/M/1/30$: Some Performance Graphing

\[\frac{x}{1-x} - x^{31} \cdot \frac{31}{1-x^{31}} \]

\[x^{30} \cdot \frac{1-x}{1-x^{31}} \]
Simple Comparisons of Queueing Systems

Question

Intuitively, is it better (in terms of response time) to have

an $M/M/1$ with service rate 10μ or

an $M/M/10$ with service rate μ,
Simple Comparisons of Queueing Systems

Figure 1: $W_a(x)$: waiting time of the $M/M/10$ queue
$W_b(x)$: waiting time of the $M/M/1$ queue