On writing proofs about asymptotic relations

Prepared by Hung Q. Ngo*

January 24, 2007

In this document, I formally write a few things discussed in previous lectures. Most problems are first analyzed in a draft form, indicating how I think about the solution to the problem. Then, formal proofs are presented. When writing homework solutions, only formal proofs are required.

Problem 1. Given two functions \(f, g : \mathbb{N}^+ \to \mathbb{R}^+ \) such that both \(f(n) \) and \(g(n) \) tend to \(\infty \) as \(n \to \infty \), is it true that \(\lg(f(n)) = O(\lg(g(n))) \) implies \(f(n) = O(g(n)) \)?

Informal analysis. The value \(\lg(f(n)) \) roughly is the “power part” of the function \(f(n) \). If \(f(n) = n^3 \), then \(\lg(f(n)) = 3 \lg n \). The relation \(\lg(f(n)) = O(\lg(g(n))) \) says that the power-part of \(f(n) \) is upper bounded by some constant times the power-part of \(g(n) \). Hence, it is possible that \(\lg(f(n)) \) is greater than \(\lg(g(n)) \) by a constant factor, yet the relation \(\lg(f(n)) = O(\lg(g(n))) \) still holds. For instance, \(f(n) = n^{100} \), \(g(n) = n^1 \), i.e. \(\lg(f(n)) = 100 \lg(g(n)) \), yet \(\lg(f(n)) = O(\lg(g(n))) \). However, clearly \(n^{100} \neq O(n) \). This is a perfect counter example to the claim! □

Formal proof. NOT TRUE. Take, for instance, \(f(n) = n^{100}, g(n) = n \). Then, \(\lg(f(n)) = 100 \lg n = O(\lg(n)) \), yet \(n^{100} \neq O(n) \). □

Note again: a formal proof is all we need for homework problems. Do not go at length explaining your thinking!

Problem 2. Given two functions \(f, g : \mathbb{N}^+ \to \mathbb{R}^+ \) such that both \(f(n) \) and \(g(n) \) tend to \(\infty \) as \(n \to \infty \), is it true that \(\lg(f(n)) = o(\lg(g(n))) \) implies \(f(n) = o(g(n)) \)?

Informal analysis. In Problem 1, the assertion was not true because the \(O \) relation is not very strong: \(f \) could be \(O(g) \) even though \(f \) is a constant factor greater than \(g \). The \(o \) relation, however, indicates that the power-part of \(g \) grows infinitely faster than the power-part of \(f \). It only makes sense then, that \(g \) grows infinitely faster than \(f \).

How are we going to prove something like this? Let’s start from the definitions.

What we know is: \(\lg(f(n)) = o(\lg(g(n))) \), which, by definition, means that for all \(c > 0 \), \(\lg(f(n)) \leq c \lg(g(n)) \) for large enough \(n \) (say \(n \geq n_0 \), for some \(n_0 \)).

What we want is: for all \(\bar{c} > 0 \), \(f(n) \leq \bar{c} g(n) \) when \(n \geq n_1 \), for some \(n_1 \).

Let’s start from what we want to prove, to see what it is equivalent to, at the same time try to make a connection to what we know. Consider any constant \(\bar{c} > 0 \).

\[
f(n) \leq \bar{c} g(n) \iff \lg(f(n)) \leq \lg(g(n)) + \lg(\bar{c}).
\]

The reason we want to take \(\lg \) is clear: what we know involves the \(\lg \) of the two functions!

Now, for **any** constant \(c \),

\[
\lg(f(n)) \leq c \lg(g(n)), \quad \text{for } n \geq n_c.
\]

Please let me know of any mistakes/typos as soon as you find them
How do we use this to show
\[\lg(f(n)) \leq \lg(g(n)) + \lg(\bar{c}), \quad \text{for large enough } n. \]
(2)

It is only natural to pick \(c > 0 \), so that
\[c \lg(g(n)) \leq \lg(g(n)) + \lg(\bar{c}), \]
in which case (3) and (1) imply (2)!

When \(\lg(\bar{c}) \geq 0 \), we can pick \(c = 1 \) and (3) would definitely hold.

When \(\lg(\bar{c}) < 0 \), (3) is equivalent to
\[c \lg(g(n)) \leq \lg(g(n)) + \lg(\bar{c}) - \lg(\bar{c}) \leq (1 - c) \lg(g(n)) \]

We thus have to choose \(c \) so that \(1 - c > 0 \), in which case the last inequality is the same as
\[\frac{-\lg(\bar{c})}{1 - c} \leq \lg(g(n)), \]
or
\[2^{-\frac{\lg(\bar{c})}{1 - c}} \leq g(n). \]
This is definitely true since the left hand side is a constant (for a fixed \(\bar{c} \) and a constant \(c < 1 \) we have chosen), while \(g(n) \) was assumed to go to \(\infty \). (This is true for \(n \) is large enough!)

Formal proof. We want to show that, for any \(\bar{c} > 0 \), there is some constant \(n_0 \) such that \(f(n) \leq \bar{c}g(n) \) when \(n \geq n_0 \).

Consider any \(\bar{c} > 0 \).

Case 1: \(\bar{c} \geq 1 \), or \(\lg(\bar{c}) \geq 0 \).

Since \(\lg(f(n)) = o(\lg(g(n))) \), by definition there is some \(n_1 \) such that
\[\lg(f(n)) \leq 1 \cdot \lg(g(n)) \quad \text{for all } n \geq n_1. \]

Thus,
\[\lg(f(n)) \leq \lg(g(n)) + \lg(\bar{c}), \quad \forall n \geq n_1, \]
which is equivalent to
\[f(n) \leq \bar{c}g(n), \quad \forall n \geq n_1. \]
Hence, when \(\bar{c} \geq 1 \), we can pick \(n_0 = n_1 \), and our assertion is proved.

Case 2: \(0 < \bar{c} < 1 \), or \(\lg(\bar{c}) < 0 \).

Since \(\lg(f(n)) = o(\lg(g(n))) \), by definition there is some \(n_1 \) such that
\[\lg(f(n)) \leq \frac{1}{2} \cdot \lg(g(n)) \quad \forall n \geq n_1. \]

Since \(\lim_{n \to \infty} g(n) = \infty \), there is some \(n_2 \) such that
\[2^{-\frac{\lg(\bar{c})}{1/2}} \leq g(n), \quad \forall n \geq n_2. \]
Now, pick \(n_0 = \max\{n_1, n_2\} \), we have, for all \(n \geq n_0 \),
\[2^{-\frac{\lg(\bar{c})}{1/2}} \leq g(n) \]
\[\iff -\lg(\bar{c}) \leq \frac{1}{2} \lg(g(n)) \]
\[\iff \frac{1}{2} \lg(g(n)) \leq \lg(\bar{c}) + \lg(g(n)) = \lg(\bar{c} \cdot g(n)). \]
Consequently, for all \(n \geq n_0 \), we have

\[
\log(f(n)) \leq \frac{1}{2} \cdot \log(g(n)) \leq \log(\bar{c} \cdot g(n)),
\]

which is the same as

\[
f(n) \leq \bar{c} \cdot g(n), \, \forall n \geq n_0,
\]

as desired. \(\square \)