Three proofs of Sauer-Shelah Lemma

Let \mathcal{H} be a hypothesis class, i.e. a class of functions from $\Omega \rightarrow \{0, 1\}$. Each hypothesis can be thought of as a subset of Ω. For any finite $S \subseteq \Omega$, let $\Pi_\mathcal{H}(S) = \{ h \cap S : h \in \mathcal{H} \}$. We call $\Pi_\mathcal{H}(S)$ the projection of \mathcal{H} on S. Equivalently, suppose $S = \{x_1, \ldots, x_m\}$, let

$$\Pi_\mathcal{H}(S) = \{ [h(x_1), \ldots, h(x_m)] : h \in \mathcal{H} \}$$

and call $\Pi_\mathcal{H}(S)$ the set of all dichotomies (or behaviors) on S realized by (or induced by) \mathcal{H}. A set S is shattered by \mathcal{H} if $|\Pi_\mathcal{H}(S)| = 2^{|S|}$. Note that, if S is shattered then every subset of S is shattered.

Definition 0.1 (VC-dimension). The VC-dimension of \mathcal{H} is defined to be

$$\text{VCD}(\mathcal{H}) = \max \{|S| : S \text{ shattered by } \mathcal{H} \}.$$

The following lemma was first proved by Vapnik-Chervonenkis [5], and rediscovered many times (Sauer [3], Shelah [4]), among others. It is often called the Sauer lemma or Sauer-Shelah lemma in the literature. (Sauer said that Paul Erdős posed the problem.)

Lemma 0.2 (Sauer lemma). Suppose $\text{VCD}(\mathcal{H}) = d < \infty$. Define

$$\Pi_\mathcal{H}(m) = \max \{|\Pi_\mathcal{H}(S)| : S \subseteq \Omega, |S| = m \}$$

(i.e., $\Pi_\mathcal{H}(m)$ is the maximum size of a projection of \mathcal{H} on an m-subset of Ω.) Then,

$$\Pi_\mathcal{H}(m) \leq \Phi_d(m) := \sum_{i=0}^d \left(\begin{array}{c} m \\ d \end{array} \right) \leq \left(\frac{em}{d} \right)^d = O(m^d)$$

(Note that, if $\text{VCD}(\mathcal{H}) = \infty$, then $\Pi_\mathcal{H}(m) = 2^m, \forall m$)

Proof #1: The inductive proof (not nice!) We induct on $m + d$. For $h \in \mathcal{H}$, define $h_S = h \cap S$. The $m = 0$ and $d = 0$ cases are trivial. Now consider $m > 0, d > 0$. Fix an arbitrary element $s \in S$. Define

$$\mathcal{H'} = \{h_S \in \Pi_\mathcal{H}(S) \mid s \notin h_S, h_S \cup \{s\} \in \Pi_\mathcal{H}(S) \}$$

Then,

$$|\Pi_\mathcal{H}(S)| = |\Pi_\mathcal{H}(S - \{s\})| + |\mathcal{H'}| = |\Pi_\mathcal{H}(S - \{s\})| + |\Pi_\mathcal{H'}(S)|$$

Since $\text{VCD}(\mathcal{H'}) \leq d - 1$, by induction we obtain

$$|\Pi_\mathcal{H}(S)| \leq \Phi_d(m - 1) + \Phi_{d-1}(m) = \Phi_d(m).$$
The shifting technique is a very powerful proof technique in extremal set theory. See [1, 2], for example. Recently the technique has found applications in the harmonic analysis of Boolean functions. It’s good to get a glimpse of the technique.

Proof #2: a proof by shifting. Let \(\mathcal{F} = \Pi_H(S) \), then \(\mathcal{F} \) is a family of subsets of \([m]\). Without loss of generality, we assume \(m > d \), because if \(m \leq d \) then \(\Phi_d(m) = 2^m \) and the inequality is trivial.

We will use “shifting” to construct a family \(\mathcal{G} \) of subsets of \([m]\) satisfying the following three conditions:

1. \(|\mathcal{G}| = |\mathcal{F}| \)
2. If \(A \subset S \) is shattered by \(\mathcal{G} \) then \(A \) is shattered by \(\mathcal{F} \)
3. If \(A \in \mathcal{G} \), then every subset of \(A \) is in \(\mathcal{G} \). (The technical term of this is that \(G \) is an order ideal of the Boolean algebra lattice. Another term is “closed under containment.”)

So, instead of upperbounding \(|\mathcal{F}| \) we can just upperbound \(G \). Every member of \(\mathcal{G} \) is shattered by \(\mathcal{G} \) and thus every member of \(\mathcal{G} \) is shattered by \(\mathcal{F} \). Thus, every member of \(\mathcal{G} \) has size at most \(d \), implying \(|\mathcal{G}| \leq \Phi_d(m) \) as desired.

We next describe the shifting operation which achieves 1, 2, 3 by an algorithm.

\begin{verbatim}
1: for i = 1 to m do
2: for F \in \mathcal{F} do
3: if F \{-i\} \notin \mathcal{F} then
4: Replace F by F \{-i\}
5: end if
6: end for
7: end for
8: Repeat steps 1–7 until no further changes is possible.
\end{verbatim}

The algorithm terminates because some set gets smaller at each step. Properties 1 and 3 are easy to verify.

We verify 2. Let \(A \) be shattered by \(\mathcal{F} \) after executing lines 2–6 at any point in the execution. We will show that \(A \) must have been shattered by \(\mathcal{F} \) before the execution. Let \(i \) be the element examined in that iteration. To avoid confusion, let \(\mathcal{F}' \) be the set family after the iteration. We can assume \(i \in A \), otherwise the iteration does not affect the “shatteredness” of \(A \).

Let \(R \) be an arbitrary subset of \(A \). We know there’s \(\mathcal{F}' \in \mathcal{F}' \) such that \(\mathcal{F}' \cap A = R \). If \(i \in R \), then \(\mathcal{F}' \in \mathcal{F} \). Suppose \(i \notin R \). There is \(T \in \mathcal{F}' \) such that \(T \cap A = R \cup \{i\} \). This means \(T - \{i\} \in \mathcal{F} \), or else \(T \) would have been replaced in step 4. But, \(T - \{i\} \cap A = R \) as desired. \(\square \)

I found the next proof from Tim Gowers’ sample Wiki-trick entry\(^1\). The proof is by Peter Frankl and Janos Pach.

Proof #3: dimensionality argument. Let \(\mathcal{F} = \Pi_H(S) \), then \(\mathcal{F} \) is a family of subsets of \([m]\). Without loss of generality, we assume \(m > d \), Let \((\mathcal{m})_{\leq d}\) denote all subsets of \([m]\) of size at most \(d \). There are \(\Phi_d(m) \) such sets. For each \(F \in \mathcal{F} \), associate a function \(g_F : (\mathcal{m})_{\leq d} \to \mathbb{R} \) defined as follows. For each \(X \in (\mathcal{m})_{\leq d} \), \(g_F(X) = 1 \) if \(X \subseteq F \), and \(g_F(X) = 0 \) otherwise. The functions \(g_F \) can naturally be viewed as vectors in the space \(\mathbb{R}^{\Phi_d(m)} \). We prove that these vectors are linearly independent, which implies \(|\mathcal{F}| \leq \Phi_d(m) \).

\(^1\)http://gowers.wordpress.com/2008/07/31/dimension-arguments-in-combinatorics/
Suppose to the contrary that there are coefficients α_F, not all zero, such that $\sum_{F \in \mathcal{F}} \alpha_F g_F = 0$, i.e. the g_F are not linearly independent. We derive the contradiction that there is a subset $Y \subseteq [m]$, $|Y| \geq d + 1$ which is shattered by \mathcal{F}. For convenience, for any set Z we define

$$\sigma(Z) = \sum_{F \in \mathcal{F}, Z \subseteq F} \alpha_F.$$

First, for any $X \in \binom{[m]}{\leq d}$, we have

$$0 = \sum_{F \in \mathcal{F}} \alpha_F g_F(X) = \sum_{F \in \mathcal{F}, X \subseteq F} \alpha_F = \sigma(X).$$

Hence, $\sigma(X) = 0$ for every $|X| \leq d$. Let $Y \subseteq [m]$ be a minimum-sized subset of $[m]$ such that $\sigma(Y) \neq 0$. Then, certainly $|Y| \geq d + 1$. (If F is a maximum-sized member of \mathcal{F} for which $\alpha_F \neq 0$, then $\sigma(F) \neq 0$; thus, Y is well-defined.) We prove that Y is shattered by \mathcal{F}.

Consider any subset $Z \subseteq Y$. To show that there is some $F \in \mathcal{F}$ for which $F \cap Y = Z$, we prove that

$$\sum_{F \in \mathcal{F}, Z \subseteq F \cap Y} \alpha_F \neq 0.$$

The following is a well-known identity in distributive lattice theory, which is basically just an inclusion-exclusion formula:

$$\sum_{F \in \mathcal{F}} \alpha_F = \sum_{Z \subseteq W \subseteq Y} (-1)^{|W-Z|} \sigma(W).$$

Now, since $\sigma(W) = 0$ for all $Z \subseteq W \subset Y$, we conclude that

$$\sum_{F \in \mathcal{F}, Z \subseteq F \cap Y} \alpha_F = (-1)^{|Y-Z|} \sigma(Y) \neq 0.$$

References

