Transmission Fault-Tolerance of Iterated Line Digraphs

Shitou Han* Hung Q. Ngo* Lu Ruan* Ding-Zhu Du *

November 22, 2000

Abstract

Many interconnection networks can be constructed with line digraph iterations. In this paper, we will establish a general result on super line-connectivity based on the line digraph iteration which improves and generalizes several existing results in the literature.

Key Words: line digraph iterations, super line-connectivity, interconnection networks.

*Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
E-mail: {shan, hngo, ruan, dzd}@cs.umn.edu

†Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China. Support in part by 973 Information Technology and High-Performance Software Program of China.
1 Introduction

When an interconnection network contains possible link-fault there are two fault-tolerance measures in the literature.

The deterministic measure is the maximum number of faulty links which, in any case, cannot disconnect the network. This measure is called the line-connectivity.

The probabilistic measure is the probability of the network being connected when links fail with certain probabilistic distribution. Let F be the family of all line-cuts of a digraph G. By the exclusion-inclusion principle,

$$\text{Prob}(G \text{ connected}) = 1 - \text{Prob}(G \text{ disconnected})$$

$$= 1 - \sum_{c \in F} \text{Prob}(c) + \sum_{c_1, c_2 \in F, c_1 \neq c_2} \text{Prob}(c_1 \cup c_2) - \ldots$$

When all links are independent, $\text{Prob}(c)$ (respectively $\text{Prob}(c_1 \cup c_2)$) is a product of failure probabilities of links in c (respectively in $c_1 \cup c_2$). Therefore, if every link has the same fault probability of a small number, then $\text{Prob}(G \text{ connected})$ depends mainly on the number of the minimum line-cuts.

Consider a digraph G with line-connectivity c. If a vertex of G has c in-links (or c out-links) other than loops, then those c in-links (out-links) form a line-cut of size c. Those line-cuts are called natural line-cuts. A digraph G is said to have super line-connectivity c if its line-connectivity is c and every line-cut of size c is natural. Clearly, the super line-connected digraph, in some sense, reaches maximum fault-tolerance.

Given a degree bound d, many constructions have been found in the literature to achieve the maximum connectivity d and near-minimum diameter [16, 5], including Kautz digraphs, cyclically-modified de Bruijn digraphs, generalized cycles, etc. Do they also have super line-connectivity? This is an interesting question. Indeed, several related research works have been published in the literature [17, 3].

In this paper, we study the super line-connectivity with line digraph iterations. In fact, many interconnection networks can be constructed with line digraph iterations, such as de Bruijn digraphs [2], Kautz digraphs [12], some of generalized de Bruijn digraphs [5, 13], Imase-Itoh digraphs [10, 11, 9], large bipartite digraphs[15], and large generalized cycles[7]. We will show that the super line-connectivity can be generally established through line digraph iterations.
2 Main Results

Consider a \(d\)-regular digraph \(G\), that is, every vertex of \(G\) has in-degree \(d\) and out-degree \(d\). Suppose each vertex of \(G\) has at most one loop. A vertex with a loop is called a loop-vertex. A cyclic modification of \(G\) is a digraph obtained from \(G\) by deleting all loops and connecting all loop-vertices into a cycle.

Lemma 2.1. Let \(d \geq 2\). Suppose \(G\) is a \(d\)-regular digraph that each vertex has at most one loop. Then every cyclic modification of \(G\) has super line-connectivity \(d\) if and only if \(G\) satisfies the following conditions:

(a) \(G\) has super line-connectivity at least \(d - 1\), and

(b) every line-cut of size \(d\) breaks the vertex set of \(G\) into two parts \(A\) and \(B\) such that either every part contains a loop-vertex or one of \(A\) and \(B\) is a singleton.

Proof. For sufficiency, assume \(G\) has properties (a) and (b). Consider a line-cut \(C\) of size \(d\) in a cyclic modification \(G^*\) of \(G\). Suppose \(C\) breaks the vertex set of \(G^*\) into two parts \(A\) and \(B\) such that every link from \(A\) to \(B\) belongs to \(C\). By (b), we have two cases.

Case 1. Both \(A\) and \(B\) contain at least one loop-vertex. Then, \(C\) must contain a link \(e\) from the cycle \(G^* \setminus G\). Then, \(C - \{e\}\) forms a line-cut of \(G\). By (a), \(C - \{e\}\) must be natural. Thus, either \(A\) or \(B\) contains only one vertex, so \(C\) must be natural in \(G^*\).

Case 2. Either \(A\) or \(B\) contains only one vertex. Thus, \(C\) must be natural in \(G^*\).

For necessity, we first assume that \(G\) does not have property (b). This means that there exists a line-cut \(C\) of size \(d\) which breaks the vertex set of \(G\) into two parts \(A\) and \(B\) such that \(|A| \geq 2\), \(|B| \geq 2\), and either \(A\) or \(B\) contains no loop-vertex. Clearly, \(C\) is also an evidence to witness that \(G^*\) has no super line-connectivity \(d\).

Now, we assume that \(G\) does not have property (a). Suppose \(C\) is a line-cut of size \(d - 1\) which breaks the vertex set of \(G\) into two parts \(A\) and \(B\) such that \(|A| \geq 2\), \(|B| \geq 2\), and all links from \(A\) to \(B\) belong to \(C\). We connect all loop-vertices in \(A\) into a path \(P_A\) and all loop-vertices in \(B\) into a path \(P_B\), and then connect two path into a cycle \(Q\). With this cycle, we can obtain a cyclic modification \(G^*\) of \(G\) such that \(C\) together with the link in the cycle \(Q\) from \(A\) to \(B\) form a line-cut of size \(d\) for \(G^*\), which witnesses that \(G^*\) has no super line-connectivity \(d\).

We should be careful with the case \(d = 1\). In fact, Lemma 2.1 does not hold for \(d = 1\). For a counterexample, consider a digraph \(G\) consisting of disjoint union of two loops and a cycle of
size three. The cyclic modification of G is not connected. In fact, when $d - 1 = 0$, the condition (a) is vague.

It is worth mentioning that if G has no loop, then conditions (a) and (b) are equivalent to the fact that G has super line-connectivity d. In fact, it follows from (a) that G has line-connectivity d. It then follows from (b) that every line-cut of size d is natural. Hence, G has super line-connectivity d. Conversely, if G has super line-connectivity d, then (a) and (b) hold trivially.

For any digraph $G = (V, E)$, we denote by $L(G)$ the line digraph of G defined as follows: The vertex set of $L(G)$ is E. For $(a, b), (c, d) \in E$, there exists a link in $L(G)$ from (a, b) to (c, d) if and only if $b = c$. For any natural number $k \geq 1$, recursively define $L^k(G) = L(L^{k-1}(G))$, where $L^0(G) = G$.

Theorem 2.2. Let G be a d-regular digraph where each vertex has at most one loop. If every cyclic modification of G has super line-connectivity d, then for $k \geq 1$, every cyclic modification of $L^k(G)$ also has super line-connectivity d unless $d = 2$ and G contains a loop.

Proof. For $d = 1$, since G is d-regular, G consists of disjoint union of cycles. If G has no loop, then G is a cycle since G has super line-connectivity 1. Thus, for every $k \geq 1$, $L^k(G)$ is a cycle and hence has super line-connectivity d. If G has a loop, then every cycle in G is a loop because every cyclic modification of G has super line-connectivity 1. This means that every vertex of G has a loop and so does every vertex of $L^k(G)$ for $k \geq 1$. Hence, every cyclic modification of $L^k(G)$ has super line-connectivity 1.

Next, we assume $d \geq 2$. By Lemma 2.1, it suffices to show that if G has properties (a) and (b), then $L(G)$ has properties (a) and (b). The fact that $L^k(G)$ satisfies (a) and (b) then follows by induction.

To do so, consider a minimum line-cut C of $L(G)$. Since G is d-regular, $L(G)$ is also d-regular. Hence, the line-connectivity of $L(G)$ is at most d, i.e., $|C| \leq d$. Suppose C breaks the vertex set of $L(G)$ into two parts A and B such that no link other than those in C is from A to B. Let

$$
U = \{(u, v) \mid ((u, v), (v, w)) \in C, \text{ for some vertex } w \text{ of } G \}\n$$

$$
W = \{(v, w) \mid ((u, v), (v, w)) \in C, \text{ for some vertex } u \text{ of } G \}\n$$

$$
V = \{v \mid ((u, v), (v, w)) \in C, \text{ for some vertices } u, w \text{ of } G \}\n$$

Our plan is to first show that C is a natural line-cut of $L(G)$ of size at least $d - 1$, namely $L(G)$ satisfies condition (a). We show several claims as follows.
Claim 1. If $|V| \geq 2$, then $|A| > |C|$ and $|B| > |C|$.

Proof. Note that for each $v \in V$, there are d out-links and d in-links at v. Each of the out-links belongs to either W or A and each of the in-links belongs to either U or B. Moreover, for each $v \in V$, there exists at least one in-link in A and at least one out-link in B. Therefore, when $|V| \geq 2$ and no loop-vertex exists in V, we have $|A| \geq 2(d+1) - |C| > |C|$ and $|B| \geq 2(d+1) - |C| > |C|$. When there exists loop-vertex in V, $L(G)$ must have a loop-vertex. Therefore, $|C| \leq d - 1$. Therefore, $|A| \geq 2d - |C| > |C|$ and $|B| \geq 2d - |C| > |C|$.

Claim 2. $|V| = 1$.

Proof. For contradiction, suppose $|V| \geq 2$. By Claim 1, $|A| > |C|$ and $|B| > |C|$. Since $|A| > |C|$, U is a vertex-cut of $L(G)$ and hence a line-cut of G. If G has no loop, then G has super line-connectivity d. Thus, $|U| \geq d$. Note that $|U| \leq |C| \leq d$. Therefore, $|U| = |C| = d$ and hence U is a natural line-cut of G. If G has a loop, then $L(G)$ has a loop. Hence, $|U| \leq |C| \leq d - 1$. However, in this case, G has super line-connectivity $d - 1$. Therefore, $|U| = |C| = d - 1$ and U is a natural line-cut of G. Similarly, we can show that W is natural and $|W| = d$ if G has no loop and $d - 1$ if G has a loop. Hence, we have $|C| = |U| = |W|$. It follows that any two links in U cannot share the same ending vertex (recall the assumption that $|V| \geq 2$). Therefore, U must consist of out-links at a vertex x and W must consist of in-links at a vertex y (Fig. 1). It also follows that $|V| = |C|$. We next show that any v in V is not a loop-vertex. In fact, for otherwise, suppose some $v \in V$ has a loop. Then the loop being in A would introduce a link $((v, v), (v, y))$ from A to B, but not in C, and the loop being in B would introduce a link $((x, v), (v, v))$ from A to B, but not in C, a contradiction.
Note that at each $v \in V$, every in-link other than (x, v) belongs to B and every out-link other than (v, y) belongs to A. Those links induce $(d - 1)^2$ links in $L(G)$ from B to A. Therefore, there exist at least $|C|(d - 1)^2$ links in $L(G)$ from B to A. However, as $L(G)$ is d-regular, every vertex in $L(G)$ has the same in-degree and out-degree. It follows that in $L(G)$ the number of links from B to A equals the number of links from A to B. Therefore, $|C|(d - 1)^2 \leq |C|$. It follows that $d = 2$ (Fig. 2). Since $|C| = |V| \geq 2$, we must have $|C| = 2$. Thus, we may write $V = \{v_1, v_2\}$. Note that every path from v_1 to y in G, not containing link (v_1, y), must pass through vertex x and hence must contain link (x, v_2). To see this, suppose P is a path from v_1 to y not going through x. It is clear that P must go through v_2. The first link in P is an out-link of v_1 and thus it is in A. The last link in P is (v_2, y) which is in B. Hence, there must be a transition from A to B along the way. Thus, P induces a link of $L(G)$ connecting A to B which is not in C. This means that (v_1, y) and (x, v_2) form a line-cut of size $|C| = d = 2$, which is not natural. However, $|C| = d$ implies that $L(G)$ has no loop and hence G has no loop. It follows that G has super line-connectivity d, contradicting the existence of an un-natural line-cut of size d.

Claim 3. $|U| = 1$ or $|W| = 1$.

Proof. For contradiction, suppose $|U| \geq 2$ and $|W| \geq 2$. By Claim 2, $|V| = 1$, i.e., $V = \{v\}$. This means that for any $(u, v) \in U$ and $(v, w) \in W$, $((u, v), (v, w)) \in C$. It follows that $|U| \cdot |W| = |C|$. Since $|U| \geq 2$ and $|W| \geq 2$, we have $|C| - |W| = (|U| - 1)|W| \geq |W|$ and $|C| - |U| = |U||(W| - 1) \geq |U|$. Therefore, $(|C| - |U|)(|C| - |W|) \geq |U| \cdot |W| = |C|$. Note that v has at least $|C| - |U|$ in-links not in U, which must belong to B, and at least $|C| - |W|$ out-links.

![Figure 2: $d = 2$.](image-url)
not in W, which must belong to A. Those links at v induce at least $(|C| - |U|)(|C| - |W|)$ links in $L(G)$ from B to A. However, the number of links from B to A equals the number of links from A to B, which equals $|C|$. Therefore, $(|C| - |U|)(|C| - |W|) \leq |C|$. This means that $(|C| - |U|)(|C| - |W|) = |C|$ and all links from B to A in $L(G)$ are also located at v in G (Fig. 3). (An link of $L(G)$ is said to be located at a vertex of G if the link is in the form $((u, v), (v, w))$.) Now, consider a link $(u, v) \notin U$, which is not a loop at v. Such a link exists because $|C| - |U| \geq |U| \geq 2$. Then (u, v) must belong to B and all in-links at u must also belong to B. Note that the number of in-links at v other than those in U is $d - |U| \leq d - 2$ and G is at least $(d - 1)$-line-connected. Therefore, after deleting all in-links at v which are not in U, the remaining digraph is still connected. Hence, there exists a path from u to v passing through a link in U. This path would induce a link in $L(G)$ from B to A, not located at v, a contradiction.

Claim 4. C is a natural line-cut of $L(G)$.

Proof. By Claim 3, $|U| = 1$ or $|W| = 1$. It follows that if $|C| = d$, then C is natural. Next, we assume $|C| \leq d - 1$. First, we consider the case that $|U| = 1$. Note that $|W| \leq |C| \leq d - 1$. Let $V = \{v\}$. There exists at least one out-link (possibly a loop) at v not in W. Suppose (v, w) is an out-link at v not in W. Then (v, w) must belong to A.

If (v, w) is not a loop, then $(v, w) \notin U$, i.e., $A - U \neq \emptyset$. Define

$$X = \{x \mid (u, x) \in A - U \text{ for some vertex } u \text{ of } G\}$$

$$Y = \{y \mid (y, w) \in B \text{ for some vertex } w \text{ of } G\}.$$

Then any vertex z not in $X \cup Y$ must satisfy property that all in-links at z belong to B and all out-links at z belong to A. Thus, the existence of such a vertex z induces d^2 links from B to A in $L(G)$. Since the number of links from A to B equals the number of links from B to A, we
have $d^2 \leq |C| \leq d - 1$, a contradiction. Therefore, X and Y form a partition of the vertex set of G. Note that every link from X to Y belongs to U. Moreover, $X \cap Y$ must be empty, as the non-emptiness of $X \cap Y$ implies the existence of a link from A to B in $L(G)$ which is not in C. Therefore, U is a line-cut of G. Since $|U| = 1$, we have $d - 1 \leq 1$ and hence $d = 2$. This falls into the case that we wanted to avoid.

If (v, w) is a loop, i.e., $(v, w) = (v, v)$, then (v, v) must belong to U. Otherwise, from (v, v) to other out-links at v would induce more links of $L(G)$ from A to B, but not in C, a contradiction. Summarizing the above arguments, we conclude that U contains only one element (v, v) which is a loop in G and all out-links at v except the loop belong to W. Therefore, C contains $d - 1$ links from U to W and at (v, v) there is a loop $((v, v), (v, v))$. Hence, C is natural.

The case when $|W| = 1$ can be done similarly.

$$|C| = \begin{cases}
 d & \text{if } G \text{ has no loop} \\
 d - 1 & \text{otherwise.}
\end{cases}$$

Proof. If G has no loop, then $L(G)$ has no loop. Thus, every natural line-cut of $L(G)$ has cardinality d. By Claim 4, $|C| = d$. If G has a loop, then this loop will induce a loop for $L(G)$. Therefore, the line-connectivity of $L(G)$ is at most $d - 1$. However, since each vertex of G has at most one loop, so does each vertex of $L(G)$. Thus, every natural line-cut of $L(G)$ has cardinality at least $d - 1$. By Claim 4, $|C| = d - 1$.

By Claims 4 and 5, if G has no loop, then $L(G)$ has super line-connectivity d; if G has a loop, then $L(G)$ has super line-connectivity $d - 1$, i.e., $L(G)$ satisfies condition (a). Thus, it remains to show that if G has a loop and $d > 2$, $L(G)$ satisfies condition (b). To do so, consider a line-cut C^* of size d in $L(G)$. Suppose C^* is not natural and C^* breaks the vertex set of $L(G)$ into two parts A^* and B^* such that no link other than those in C^* is from A^* to B^*. Let

$$
U^* = \{ (u, v) \mid ((u, v), (v, w)) \in C^*, \text{ for some vertex } w \text{ of } G \} \\
W^* = \{ (v, w) \mid ((u, v), (v, w)) \in C^*, \text{ for some vertex } u \text{ of } G \} \\
V^* = \{ v \mid ((u, v), (v, w)) \in C^*, \text{ for some vertices } u, w \text{ of } G \}
$$

We show the following claims.
Claim 6. $A^* - U^* \neq \emptyset$ and $B^* - W^* \neq \emptyset$.

Proof. If $|V^*| \geq 2$, then by an argument similar to the proof of Claim 1, we can show that $A^* - U^* \neq \emptyset$ and $B^* - W^* \neq \emptyset$. If $|V^*| = 1$, then as C^* is not natural, it must be the case that $|U^*| \geq 2$ and $|W^*| \geq 2$. Since $|C^*| = |U^*| \cdot |W^*|$, we have $|C^*| - |U^*| \geq |U^*|$ and $|C^*| - |W^*| \geq |W^*|$. Hence, $(d-1) - |U^*| \geq |U^*| - 1 \geq 1$ and $(d-1) - |W^*| \geq |W^*| - 1 \geq 1$. Assume $V^* = \{v\}$. Then at v, there exist at least $(d-1) - |U^*|$ in-links not in U^*, which must belong to $B^* - W^*$, and there exist at least $(d-1) - |W^*|$ out-links not in W^*, which must belong to $A^* - U^*$. Therefore, $A^* - U^* \neq \emptyset$ and $B^* - W^* \neq \emptyset$. \qed

Claim 7. If $A^* - U^* \neq \emptyset$ and $B^* - W^* \neq \emptyset$, then both A^* and B^* contain at least one loop-vertex.

Proof. Define

$$X = \{x \mid (u,x) \in A^* - U^*, \text{ for some vertex } u \text{ of } G\}$$

$$Y = \{y \mid (y,w) \in B^*, \text{ for some vertex } w \text{ of } G\}.$$

Similar to the proof of Claim 4, we can show that every link from X to Y belongs to U^*, that X and Y form a partition for the vertex set of G, so that U^* is a line-cut of G. Note that $|U^*| \leq |C^*| = d$. Since G has properties (a) and (b), we have $|U^*| \geq d-1$ and either

(u1) U^* is a natural line-cut in G, or

(u2) $|U^*| = d$ and both X and Y contain at least one loop-vertex. (When either X or Y is a singleton, case (u1) applies.)

If (u2) holds, then both A^* and B^* contain a loop-vertex. Thus, we may assume that (u1) holds.

Similarly, we may assume that W^* is a natural line-cut of G. Note that $d - 1 \leq |U^*| \leq d$ and $d - 1 \leq |W^*| \leq d$. Therefore, we have four cases as Figure 4 illustrated.

Case 1. $|U^*| = |W^*| = d - 1$. Since $|C^*| = d$, in $L(G)$ there is exactly one element of U^* incident to two links of C^*. Meanwhile, there is exactly one element of W^* incident to two links of C^*. This happens only if $d \geq 4$. Note that at each $v \in V^*$, all in-links not in U^* must belong to B^* and all out-links not in W^* must belong to A^*. Therefore, there are totally

$$(d-4)(d-1)^2 + 2(d-2)(d-1) = (d^2 - 3d)(d-1)$$
Figure 4: The proof of Claim 7.

links in $L(G)$ from B^* to A^* located at vertices in V^*. Since the number of links from A^* to B^* equals the number of links from B^* to A^*, we have

$$(d^2 - 3d)(d - 1) \leq |C^*| = d.$$

This inequality cannot hold for $d \geq 4$.

Case 2. $|U^*| = d - 1$ and $|W^*| = d$. In this case there is exactly one element in U^* incident to two links in C^* and none of the elements of W^* is incident to more than one link in C^*. This occurs only if $d \geq 3$ (recall that $d > 2$). In this case, there are totally $(d - 2)(d - 1)^2 + (d - 2)(d - 1) (= d(d - 2)(d - 1))$ links in $L(G)$ from B^* to A^* located at vertices in V^*. Since the number of links from A^* to B^* equals the number of links from B^* to A^*, we have

$$d(d - 2)(d - 1) \leq |C^*| = d.$$

This inequality cannot hold for $d \geq 3$.

Case 3. $|U^*| = d$ and $|W^*| = d - 1$. A contradiction can be found by an argument similar to that in Case 2.

Case 4. $|U^*| = |W^*| = d$. By an argument similar to the proof of Claim 2, we can find a contradiction.

By Claims 6 and 7, $L(G)$ satisfies condition (b), completing the proof of Theorem 2.2.

The following is a special case of Theorem 2.2, since every cyclic modification of a d-regular digraph G with super line-connectivity d is the same as G.

Corollary 2.3. If a d-regular digraph G has super line-connectivity d, then $L^k(G)$ has super line-connectivity d for every $k \geq 1$.

What would happen to Theorem 2.2 if $d = 2$ and G contains a loop? In this exceptional case, Theorem 2.2 does not hold. A counterexample is shown in Fig. 5. However, with certain additional condition, we can still establish the same result.
Corollary 2.4. Consider a 2-regular digraph G with some loops. Suppose G has super line-connectivity one and no path of length two is between two loop-vertices. If every cyclic modification of G has super line-connectivity two, then every cyclic modification of $L^k(G)$ $(k \geq 1)$ has super line-connectivity two.

Proof. Going over the proof of Theorem 2.2, we may find that only in the proof of Claim 4 we need to avoid the exceptional case that $d = 2$ and G contains a loop. The proof cannot proceed because in this case $|U| = |W| = 1$. Assume $U = \{(u, v)\}$ and $W = \{(v, w)\}$. Then, both U and W can be natural line-cuts of G while u and w are loop-vertices, but $v \in V$ is not. This produces a path of length two between two loop-vertices. \hfill \Box

3 Applications

We look at several examples in this section.

Example 3.1. The Kautz digraph $K(d, 1)$ is the complete digraph on $d + 1$ vertices without loop and in general $K(d, D) = L^{D-1}(K(d, 1))$ [12]. We claim that $K(d, 1)$ has super line-connectivity d. Consider a line-cut C of size d in $K(d, 1)$, which breaks the vertex set of $K(d, 1)$ into two parts A and B such that every link from A to B belongs to C. Note that there are $|A|(|A| - 1)$ links from A to A and each vertex has d out-links. Therefore, $|A|d - |A|(|A| - 1) = d$. That is, $(|A| - 1)(d - |A|) = 0$. Thus, $|A| = 1$ or $|A| = d$. Since $|A| = d$ implies $|B| = 1$, C is a natural line-cut.

Corollary 3.2. The Kautz digraph $K(d, D)$ has super line-connectivity d.

Example 3.3. The de Bruijn digraph $B(d, 1)$ is the complete digraph on d vertices with all loops and in general $B(d, D) = L^{D-1}(B(d, 1))$. We claim that every cyclic modification of $B(d, 1)$
has super line-connectivity \(d \). In fact, every vertex of \(B(d, 1) \) has a loop and hence it has property (b). Moreover, removal all loops of \(B(d, 1) \) results in \(K(d - 1, 1) \) and hence \(B(d, 1) \) has super line-connectivity \(d - 1 \). By Lemma 2.1, every cyclic modification of \(B(d, 1) \) has super line-connectivity \(d \) for \(d \geq 2 \). By Theorem 2.2, every cyclic modification of \(B(d, D) \) has super line-connectivity \(d \) for \(d \geq 3 \). For \(d = 2 \), we may directly verify that every cyclic modification of \(B(2, 2) \) and \(B(2, 3) \) (Fig. 6) have super line-connectivity 2. Note that the distance between two loop-vertices in \(B(2, 2) \) is at least \(D - 1 \). By Corollary 2.4, every cyclic modification of \(B(2, D) \) for \(D \geq 4 \) also has super line-connectivity 2. Therefore, we have

Corollary 3.4. Every cyclic modification of the de Bruijn digraph \(B(d, D) \) has super line-connectivity \(d \).

Example 3.5. Fiol and Yebra [8] defined a family of bipartite digraphs \(BD(d, n) \) as follows: The vertex set is \(\mathbb{Z}_2 \times \mathbb{Z}_n = \{ (\alpha, i) \mid \alpha \in \mathbb{Z}_2, i \in \mathbb{Z}_n \} \). There is a link from \((\alpha, i) \) to \((1 - \alpha, (-1)^\alpha (i + \alpha) + t) \) for every \(t = 0, 1, \ldots, d - 1 \). This family of digraphs has a property that \(BD(d, d^D) = L(BD(d, n)) \). We will show the following.

Corollary 3.6. For \(d \geq 3 \) and \(D \geq 1 \), the bipartite digraph \(BD(d, d^D) \) has super line-connectivity \(d \).

Proof. It is easy to see that \(BD(d, d) \) is the complete bipartite digraph. For \(d \geq 3 \), \(BD(d, d) \) has super line-connectivity \(d \). Note that a simple digraph without loop has super line-connectivity \(d \) if and only if every line-cut of size at most \(d \) is natural. Thus, it suffices to show that every line-cut of size at most \(d \) in \(BD(d, d) \) is natural. To do it, suppose \(BD(d, d) \) has a line-cut \(C \) with cardinality at most \(d \). We will prove that \(C \) is a natural line-cut and hence \(C \) must have cardinality \(d \). Suppose \(C \) breaks the vertex set of \(BD(d, d) \) into two parts \(A \) and \(B \) such that every link from \(A \) to \(B \) belongs to \(C \). Let \((P_1, P_2) \) be the partition of the vertex set such that

![Figure 6: B(2, 2) and B(2, 3).](image)
every link is between P_1 and P_2. Denote $x = |A \cap P_1|$ and $y = |A \cap P_2|$. Then $d - x = |B \cap P_1|$ and $d - y = |B \cap P_2|$. Note that there are $x(d - y)$ links from $A \cap P_1$ to $B \cap P_2$ and there are $y(d - x)$ links from $A \cap P_2$ to $B \cap P_1$. Therefore

$$x(d - y) + y(d - x) \leq d.$$

We claim that one of $x, y, d - x,$ and $d - y$ must be 0. For contradiction, suppose $x > 0$, $y > 0$, $d - x > 0$, and $d - y > 0$. Note that $y \geq 2$ or $d - y \geq 2$. Thus,

$$x(d - y) + y(d - x) > x + (d - x) = d,$$

a contradiction. Now, without loss of generality, assume $y = 0$. Then $d - y = d$ and $x = |A| > 0$. Note that $x(d - y) \leq d$. This implies $x = 1$. Hence, C is a natural line-cut.

It is worth mentioning that $BD(2, 2)$ does not have super line-connectivity 2.

The bipartite digraph $BD(d, d^2 + 1) = (P_1, P_2, E)$ has the property that for each vertex $v \in P_1$ (or $v \in P_2$),

$$\{w \mid \exists u \text{ such that } (v, u), (u, w) \in E\} = P_1 - \{v\} \text{ (or } P_2 - \{v\} \}.$$

Now, we show that for $d \geq 3$, $BD(d, d^2 + 1)$ has super line-connectivity d. To do so, let C be a line-cut of size at most d, which breaks the vertex set into two nonempty parts A and B such that every link from A to B belongs to C. Denote $x = |A \cap P_1|$ and $y = |A \cap P_2|$. Then $(d^2 + 1) - x = |B \cap P_1|$ and $(d^2 + 1) - y = |B \cap P_2|$. Note that $x + y = |A| \geq 1$. Without loss of generality, we may assume $x \geq 1$. For each $v \in A \cap P_1$, let t_v be the number of links from $A \cap P_1$ to $B \cap P_2$. Denote $t = \min_{v \in A \cap P_1} t_v$. Suppose $v^* \in A \cap P_1$ achieves $t_{v^*} = t$. Then there are $(d - t)$ vertices in $A \cap P_2$ adjacent to v^*. From those $(d - t)$ vertices, there are at least $d(d - t) - (x - 1)$ links to $B \cap P_1$. Therefore, there are at least $xt + d(d - t) - (x - 1)$ links from A to B. This means that

$$xt + d(d - t) - (x - 1) \leq d.$$

If $t \geq 1$, then $(x - 1)(t - 1) \geq 0$, i.e., $xt \geq x + t - 1$. It follows that

$$x + t - 1 + d(d - t) - (x - 1) \leq d.$$

Therefore, $(d - 1)(d - t) \leq 0$. Hence, $t = d$. So, $xd - (x - 1) \leq d$, that is, $(x - 1)(d - 1) \leq 0$. This implies $x = 1$.

13
If \(t = 0 \), then \(d^2 + 1 - d \leq x \). Similarly, if \((d^2 + 1) - x > 0 \), then either \((d^2 + 1) - x = 1 \) or \((d^2 + 1) - x \geq (d^2 + 1) - d \). This implies that \(x \) has only three possible values \(1, d^2 \) and \(d^2 + 1 \). Similarly, each of \(y, (d^2 + 1) - x, \) and \((d^2 + 1) - y \) has four possible values \(0, 1, d^2, \) and \((d^2 + 1) \).

Suppose \(x = 1 \). Then \(t = d \) and hence \((d^2 + 1) - y = d^2 \) or \((d^2 + 1) - y = d^2 + 1 \). If \((d^2 + 1) - y = d^2 \), then \(y = 1 \). This would imply the existence of \(d \) links from \(A \cap P_2 \) to \(B \cap P_1 \). Therefore, there are totally \(2d \) links from \(A \) to \(B \), a contradiction. This means that \((d^2 + 1) - y = d^2 + 1 \). Hence, \(y = 0 \). Thus, \(C \) is natural.

Note that by the same argument, we can show that \(y = 1 \) or \((d^2 + 1) - x = 1 \) or \((d^2 + 1) - y = 1 \) implies that \(C \) is natural. Thus, it remains to prove that we must have \(x = 1 \) or \(y = 1 \) or \((d^2 + 1) - x = 1 \) or \((d^2 + 1) - y = 1 \). For contradiction, suppose none of them equals 1. Then they must equal 0 or \(d^2 + 1 \). That is, \(x = d^2 + 1 \), \((d^2 + 1) - y = 0 \) (since \(t = 0 \)), and \((d^2 + 1) - x = 0 \). Hence, \(|B| = (d^2 + 1) - x + (d^2 + 1) - y = 0 \), a contradiction.

Corollary 3.7. For \(d \geq 3 \) and \(D \geq 2 \), the bipartite digraph \(BD(d, d^D + d^{D-2}) \) has supper line-connectivity \(d \).

Example 3.8. Ferrero and Padró [7] studied two families of digraphs \(BGC(p, d, n) = C_p \otimes B(d, n) \) and \(KGC(p, d, n) = C_p \otimes K(d, n) \) where \(C_p \) is a directed cycle of length \(p \) and operation \(\otimes \) is defined as follows. Let \(G = (V, E) \) and \(G' = (V', E') \). Then \(G \otimes G' \) has vertex set \(V \times V' \) and link set \(\{((u, u'), (v, v')) \mid (u, v) \in E, (u', v') \in E'\} \).

With arguments similar to those in Example 3.5, we can show the following:

Corollary 3.9. For \(d \geq 3 \), \(BGC(p, d, d^k) \) has supper line-connectivity \(d \).

Corollary 3.10. For \(d \geq 3 \), \(KGC(p, d, d^{p+k} + d^k) \) (\(= L^k(KGC(p, d, d^p + 1)) \)) has supper line-connectivity \(d \).

4 Discussion

The line digraph iteration preserves the degree, that is, the line digraph of a \(d \)-regular digraph is still \(d \)-regular. This is a very important property different from line graph iteration. This property enable the line digraph iteration to become a very useful tool to study interconnection networks. Many important properties can be preserved through line digraph iterations [8, 6, 4, 14] under certain conditions. Those conditions should be carefully established.
References

