We have two algorithms A_1 and A_2 for solving the same problem, with runtime functions $T_1(n)$ and $T_2(n)$, respectively. Which algorithm is more efficient?

We compare the growth rate of $T_1(n)$ and $T_2(n)$.

If $T_1(n) = \Theta(T_2(n))$, then the efficiency of the two algorithms are about the same (when n is large).

If $T_1(n) = o(T_2(n))$, then the efficiency of the algorithm A_1 will be better than that of algorithm A_2 (when n is large).

By using the definitions, we can directly show whether $T_1(n) = O(T_2(n))$, or $T_1(n) = \Omega(T_2(n))$. However, it is not easy to prove the relationship of two functions in this way.
Limit Test

Limit Test is a powerful method for comparing functions.

Let $T_1(n)$ and $T_2(n)$ be two functions. Let $c = \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)}$.

1. If c is a constant > 0, then $T_1(n) = \Theta(T_2(n))$.
2. If $c = 0$, then $T_1(n) = o(T_2(n))$.
3. If $c = \infty$, then $T_1(n) = \omega(T_2(n))$.
4. If c does not exist (or if we do not know how to compute c), the limit test fails.

Proof of (1): $c = \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)}$ means: $\forall \epsilon > 0$, there exists $n_0 \geq 0$ such that for any $n \geq n_0$: $\left| \frac{T_1(n)}{T_2(n)} - c \right| \leq \epsilon$; or equivalently: $c - \epsilon \leq \frac{T_1(n)}{T_2(n)} \leq c + \epsilon$. Let $\epsilon = c/2$ and let $c_1 = c - \epsilon = c/2$ and $c_2 = c + \epsilon = 3c/2$, we have

$$c_1 T_2(n) \leq T_1(n) \leq c_2 T_2(n)$$

for all $n \geq n_0$. Thus $T_1(n) = \Theta(T_2(n))$ by definition.
Example

Example 1

\[T_1(n) = 10n^2 + 15n - 60, \quad T_2(n) = n^2 \]

\[
\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{10n^2 + 15n - 60}{n^2} = \lim_{n \to \infty} \left(10 + \frac{15}{n} - \frac{60}{n^2}\right) = 10 + 0 - 0 = 10
\]

Since 10 is a constant \(> 0 \), we have \(T_1(n) = \Theta(T_2(n)) = \Theta(n^2) \) by the statement 1 of Limit Test (as expected).
The log functions are very useful in algorithm analysis.

\[
\log = \log_2 n \\
\log n = \log_{10} n \\
\ln n = \log_e n
\]

($\ln n$ is the log function with the natural base $e = 2.71828\ldots$).
Log base change formula

For any $1 < a, b$, \(\log_b n = \frac{\log_a n}{\log_a b} = \log_b a \cdot \log_a n. \)

Proof: Let \(k = \log_b n. \) By definition: \(n = b^k. \)
Take \(\log_a \) on both sides: \(\log_a n = \log_a (b^k) = k \cdot \log_a b. \)
This implies: \(\log_b n = k = \frac{\log_a n}{\log_a b}. \)

Let \(n = a \) in this formula and note \(1 = \log_a a: \)

\[
\log_b a = \frac{\log_a a}{\log_a b} = \frac{1}{\log_a b}
\]

This proves the second part of the formula.
L’Hospital Rule

- If $\lim_{n \to \infty} f(n) = 0$ and $\lim_{n \to \infty} g(n) = 0$, then

 $$
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}
 $$

- If $\lim_{n \to \infty} f(n) = \infty$ and $\lim_{n \to \infty} g(n) = \infty$, then

 $$
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}
 $$
Example 2

$T_1(n) = n^2 + 6$, $T_2(n) = n \lg n$. (Recall: $\lg n = \log_2 n$.)

\[
\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{n^2 + 6}{n \lg n} = \lim_{n \to \infty} \frac{n + \frac{6}{n}}{\lg n}
\]
\[
= \lim_{n \to \infty} \frac{1 - \frac{6}{n^2}}{\frac{1}{\ln 2 \cdot n}} \quad \text{(by L’Hospital Rule)}
\]
\[
= \ln 2 \lim_{n \to \infty} (n - \frac{6}{n}) = \ln 2 (\infty - 0) = \infty
\]

By Limit Test, we have $n^2 + 6 = \omega(n \lg n)$.
Example 3

\[T_1(n) = (\ln n)^k, \quad T_2(n) = n^\epsilon, \] where \(k > 0 \) is any (large) constant and \(\epsilon > 0 \) is any (small) constant. (Recall: \(\ln n = \log_e n \).)

\[
\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{(\ln n)^k}{n^\epsilon} \quad \text{(use L'Hospital Rule)}
\]

\[
= \lim_{n \to \infty} \frac{k(\ln n)^{k-1} \times (1/n)}{\epsilon n(\epsilon - 1)}
\]

\[
= \frac{k}{\epsilon} \lim_{n \to \infty} \frac{(\ln n)^{k-1}}{n^\epsilon} \quad \text{(use L'Hospital Rule again and simplify)}
\]

\[
= \frac{k(k-1)}{\epsilon^2} \lim_{n \to \infty} \frac{(\ln n)^{k-2}}{n^\epsilon} \quad \text{(use L'Hospital Rule k times)}
\]

\[\cdots \]

\[= \frac{k(k-1)\cdots2\cdot1}{\epsilon^k} \lim_{n \to \infty} \frac{1}{n^\epsilon} = 0 \]

So by Limit Test, \((\ln n)^k = o(n^\epsilon) \) for any \(k \) and \(\epsilon \). For example, take \(k = 100 \) and \(\epsilon = 0.01 \), we have \((\ln n)^{100} = o(n^{0.01}) \).
Example

Example 4

\(T_1(n) = n^k, T_2(n) = a^n, \) where \(k > 0 \) is any (large) constant and \(a > 1 \) is any constant bigger than 1.

\[
\begin{align*}
\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} &= \lim_{n \to \infty} \frac{n^k}{a^n} \quad \text{(using L’Hospital Rule)} \\
&= \lim_{n \to \infty} \frac{k \cdot n^{k-1}}{\ln a \cdot a^n} \\
&= \lim_{n \to \infty} \frac{k}{\ln a} \lim_{n \to \infty} \frac{n^{k-1}}{a^n} \quad \text{(using L’Hospital Rule \(k \) times)} \\
&= \frac{k(k-1) \cdots 2 \cdot 1}{(\ln a)^k} \lim_{n \to \infty} \frac{1}{a^n} = 0
\end{align*}
\]

So by Limit Test, \(n^k = o(a^n) \) for any \(k > 0 \) and \(a > 1 \). For example, take \(k = 1000 \) and \(a = 1.001 \), we have \(n^{1000} = o((1.001)^n) \).
Example 5

$T_1(n) = \log_a n, \ T_2(n) = \log_b n$, where $a > 1$ and $b > 1$ are any two constants bigger than 1.

By the Log Base Change Formula: $\log_b n = \log_b a \cdot \log_a n$

Thus: $\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \frac{\log_a n}{\log_a \cdot \log_a n} = \frac{1}{\log_b a}$

Since $\frac{1}{\log_b a} > 0$ is a constant, we have $\log_a n = \Theta(\log_b n)$ by Limit Test.

So: the growth rates of the \log functions are the same for any base > 1.
Example 6

\(T_1(n) = a^n, \ T_2(n) = b^n, \) where \(1 < a < b \) are any two constants.

We have: \(\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b} \right)^n = 0. \)

Thus: \(a^n = o(b^n) \) (for any \(1 < a < b \)) by Limit Test.

The list of common functions:

The following list shows the functions commonly used in algorithm analysis, in the order of increasing growth rate (\(a, b, c, d, k, \epsilon \) are positive constants, \(\epsilon < 1, k > 1, d > 1 \) and \(a < b \)):

\[c, \log_d n, (\log_d n)^k, n^\epsilon, n, n^k, a^n, b^n, n!, n^n \]

in the sense that if \(f(n) \) and \(g(n) \) are any two consecutive functions in the list, we have \(f(n) = o(g(n)) \).
Example 7

\(T_1(n) = n! \) and \(T_2(n) = a^n \ (a > 1) \)

- \(\lim_{n \to \infty} \frac{a^n}{n!} = ? \)
- L’Hospital Rule doesn’t help: We don’t know how to take derivative of \(n! \)

\[
\frac{a^n}{n!} = \frac{a}{1} \cdot \frac{a}{2} \cdot \ldots \cdot \frac{a}{2\lceil a \rceil} \cdot \frac{a}{2\lceil a \rceil + 1} \cdot \ldots \cdot \frac{a}{n} \\
\underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdot \ldots \cdot \frac{a}{2\lceil a \rceil}}_{2\lceil a \rceil \text{ terms}} \quad \underbrace{\frac{a}{2\lceil a \rceil + 1} \cdot \ldots \cdot \frac{a}{n}}_{(n-2\lceil a \rceil) \text{ terms}}
\]

The first part is a constant \(c > 0 \). In the second part, each term < 1/2. So:

\[
0 \leq \lim_{n \to \infty} \frac{a^n}{n!} \leq c \cdot \lim_{n \to \infty} \left(\frac{1}{2} \right)^{(n-2\lceil a \rceil)} = 0
\]

By Limit Test: \(a^n = o(n!) \).
Stirling Formula

\[\sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\frac{1}{12n+1}} \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\frac{1}{12n}} \]

or:

\[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \cdot \left(1 + \Theta \left(\frac{1}{n} \right) \right) \]

When \(n = 10; \)

- \(n! = 3628800. \)
- \(\sqrt{2\pi n} \left(\frac{n}{e} \right)^n = 3598696, \text{ 99\% accurate.} \)
Example 7 (another solution)

\[T_1(n) = n! \text{ and } T_2(n) = a^n \ (a > 1) \]

\[
\lim_{n \to \infty} \frac{n!}{a^n} \geq \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{ae} \right)^n = \lim_{n \to \infty} \sqrt{2\pi n} \cdot \lim_{n \to \infty} \left(\frac{n}{ae} \right)^n
\]

The first limit is infinite. The second limit goes to infinity. So it’s also infinite. Thus \(\lim_{n \to \infty} \frac{n!}{a^n} = \infty \) and \(n! = \omega(a^n) \) by limit test.

Example 8

\[T_1(n) = n^n \text{ and } T_2(n) = n! \]

By using similar method as in Example 7, we can show: \(n! = o(n^n) \)
Consider the following simple program:

1: for $i = 1$ to n do
2: the loop body takes $\Theta(i^k)$ time
3: end for

What’s the runtime of this program? It should be:

$$T(n) = \sum_{i=1}^{n} \Theta(i^k) = c \sum_{i=1}^{n} i^k$$ (for some constant c)

Thus, it is important to know the sum of the form $\sum_{i=1}^{n} i^k$.
Summation formulas

\[\sum_{i=1}^{n} i^1 = 1 + 2 \cdots + n = \frac{n(n + 1)}{2} = \Theta(n^2) \]
\[\sum_{i=1}^{n} i^2 = 1^2 + 2^2 \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} = \Theta(n^3) \]
\[\sum_{i=1}^{n} i^3 = 1^3 + 2^3 \cdots + n^3 = \frac{n^2(n + 1)^2}{4} = \Theta(n^4) \]

In general, for any \(k > 0 \), the following is true.

\[\sum_{i=1}^{n} i^k = \Theta(n^{k+1}) \]
Summations:

By using these formulas, we can compute the runtime of nested loops.

Example

```plaintext
for i = 1 to n do
    for j = i to n do
        for k = i to j do
            (\ldots loop body takes $\Theta(1)$ time.)
        end for
    end for
end for
```

Since the inner loop body takes $\Theta(1)$ time, we only need to count the number $D(n)$ of the inner loop iterations. Then

$T(n) = D(n) \cdot \Theta(1) = \Theta(D(n))$.

\[
D(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1 = \sum_{i=1}^{n} \sum_{j=i}^{n} (j - i + 1)
\]
Calculate $D(n)$

To calculate the second sum, let $t = j - i + 1$. When $j = i$, $t = 1$. When $j = n$, $t = n - i + 1$. Thus

$$\sum_{j=i}^{n} (j - i + 1) = \sum_{t=1}^{n-i+1} t = 1 + 2 \cdots + (n - i + 1) = \frac{(n - i + 2)(n - i + 1)}{2}$$

Next we calculate: $\sum_{i=1}^{n} \frac{(n-i+2)(n-i+1)}{2}$. Let $s = n - i + 1$. When $i = 1$, $s = n$. When $i = n$, $s = 1$. Thus:

$$\sum = \sum_{s=1}^{n} \frac{(s+1)s}{2} = \frac{1}{2} \{ \sum_{s=1}^{n} s^2 + \sum_{s=1}^{n} s \}$$

$$= \frac{1}{2} \{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \} = \Theta(n^3)$$
More Summations:

The following summation formulas are useful.

\[
\sum_{i=0}^{n} a^i = 1 + a + a^2 + \cdots + a^n = \begin{cases}
\frac{1-a^{n+1}}{1-a} & = \Theta(1) \quad \text{if } 0 < a < 1 \\
\frac{a^{n+1}-1}{a-1} & = \Theta(a^n) \quad \text{if } 1 < a \\
n+1 & = \Theta(n) \quad \text{if } a = 1
\end{cases}
\]

(5) \hspace{1cm} \sum_{i=0}^{n} a^i \text{ is called geometric series.}

\[
H(n) = 1 + 1/2 + 1/3 + \cdots + 1/n = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n)
\]

(6) \hspace{1cm} H(n) \text{ is called Harmonic series.}

How to compute \(H(n) \)?
Integration Method

Let $f(x)$ be an increasing function. Then for any $a \leq b$:

$$\int_{a-1}^{b} f(x) \, dx \leq \sum_{i=a}^{b} f(i) \leq \int_{a}^{b+1} f(x) \, dx$$

In the Fig, $\sum = \text{the area of the staircase region.}$ The first $\int = \text{the area of the shaded region.}$ Since $f(x)$ is increasing, the first \leq holds.
Integration Method

In the Fig, \(\sum \) is the area of the staircase region. The second \(\int \) is the area of the shaded region. Since \(f(x) \) is increasing, the second \(\leq \) holds.

Similarly:

Let \(f(x) \) be a decreasing function. Then for any \(a \leq b \):

\[
\int_{a-1}^{b} f(x) \, dx \geq \sum_{i=a}^{b} f(i) \geq \int_{a}^{b+1} f(x) \, dx
\]
For any $k > 0$, $f(x) = x^k$ is an increasing function. Let $a = 1$ and $b = n$.

$$\int_0^n x^k \, dx \leq \sum_{i=1}^n i^k \leq \int_1^{n+1} x^k \, dx$$

$$\int_0^n x^k \, dx = \left. \frac{1}{k+1} x^{k+1} \right|_{x=0}^{x=n} = \frac{n^{k+1}}{k+1}; \quad \int_1^{n+1} x^k \, dx = \left. \frac{1}{k+1} x^{k+1} \right|_{x=1}^{x=n+1} = \frac{(n+1)^{k+1} - 1}{k+1}$$

Thus:

$$\frac{n^{k+1}}{k+1} \leq \sum_{i=1}^n i^k \leq \frac{(n+1)^{k+1} - 1}{k+1}$$

By limit test, both lower and upper bounds $= \Theta(n^{k+1})$. Thus $\sum_{i=1}^n i^k = \Theta(n^{k+1})$.
Example

\[f(x) = \frac{1}{x} \] is a decreasing function. Let \(a = 1 \) and \(b = n \).

\[
\int_0^n \frac{dx}{x} \geq \sum_{i=1}^n \frac{1}{i} \geq \int_1^{n+1} \frac{dx}{x}
\]

\[
\int_0^n \frac{dx}{x} = \ln x \bigg|_0^n = \ln n - (\infty) = \infty. \text{ This doesn't work! Try } a = 2 \text{ and } b = n:
\]

\[
\int_1^n \frac{dx}{x} \geq \sum_{i=2}^n \frac{1}{i} \geq \int_2^{n+1} \frac{dx}{x}
\]

This gives: \((\ln n - \ln 1) \geq \sum_{i=2}^n \frac{1}{i} \geq (\ln (n + 1) - \ln 2)\).

Note \(\ln 1 = 0 \). Add 1 to the above: \(1 + \ln n \geq \sum_{i=1}^n \frac{1}{i} \geq (\ln (n + 1) - \ln 2 + 1)\).

By limit test, both lower and upper bounds = \(\Theta(\ln n) \). So

\[
H(n) = \sum_{i=1}^n \frac{1}{i} = \Theta(\ln n)
\]

Note: \(\lim_{n \to \infty} (\ln n - \sum_{i=1}^n \frac{1}{i}) = c \), where \(c = 0.577... \) is Euler constant.
Solving Linear Recursive Equations

Fibonacci number

\[
\text{Fib}_0 = 0, \; \text{Fib}_1 = 1, \ldots, \; \text{Fib}_{n+2} = \text{Fib}_{n+1} + \text{Fib}_n
\]

How to compute \(\text{Fib}_n\) directly from \(n\)?

\[
\text{Fib}_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

- \(\frac{1 \pm \sqrt{5}}{2}\) are the two roots of the equation: \(x^2 = x + 1\).

- Since \(\left| \frac{1 - \sqrt{5}}{2} \right| < 1\), the second term \(\rightarrow 0\). So \(\text{Fib}_n \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n\).

\((\alpha = \frac{1 + \sqrt{5}}{2} = 1.618\ldots\text{ is called the golden ratio.})\)

- For \(n = 8\), \(\text{Fib}_8 = 21\) where \(\frac{1}{\sqrt{5}} \alpha^n = 21.0095\).

- How to find such formula?
A sequence \(\{f_0, f_1, \ldots, f_n \ldots\} \) is called a linear recursive sequence of order \(k \) if it is defined as follows:

- \(f_0, f_1, \ldots, f_{k-1} \) are given.
- For all \(n \geq 0 \), \(f_{n+k} = c_{k-1}f_{n+k-1} + c_{k-2}f_{n+k-2} + \cdots + c_1f_{n+1} + c_0f_n \)

where \(c_{k-1}, c_{k-2}, \ldots, c_0 \) are fixed constants.

Example 1: \(\{\text{Fib}_n\} \) is a linear recursive sequence of order 2 where \(c_1 = 1 \) and \(c_0 = 1 \).

Example 2: \(f_0 = 1, f_1 = 2, f_2 = 4 \) and for all \(n \geq 0, f_{n+3} = 3f_{n+1} - 2f_n \)
Then \(\{f_n\} \) is a linear recursive sequence of order 3 where \(c_2 = 0, c_1 = 3 \) and \(c_0 = -2 \).
Solving linear recursive sequences

- The characteristic equation of the linear recursive seq is:

\[x^k = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \cdots + c_1x^1 + c_0 \]

- Solve this equation for \(x \). Let \(\alpha_1, \ldots, \alpha_k \) be the roots.
- Assuming all roots are distinct. Then the solution of \(f_n \) has the form

\[f_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n + \cdots + a_k(\alpha_k)^n \]

for some constants \(a_1, a_2, \ldots, a_k \).
- Plug in the initial values \(f_0, f_1, \ldots, f_{k-1} \), we get \(k \) equations. Solve them to find \(a_1, a_2, \ldots, a_k \).
Fibonacci number

\[F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n \]

The characteristic equation is: \(x^2 = x + 1 \).

The roots are: \(\alpha_1 = \frac{1+\sqrt{5}}{2} \) and \(\alpha_2 = \frac{1-\sqrt{5}}{2} \).

The solution has the form: \(F_n = a_1 (\alpha_1)^n + a_2 (\alpha_2)^n \)

Plug in initial value \(F_0 = 0 \) and \(F_1 = 1 \):

\[
0 = F_0 = a_1 \alpha_1^0 + a_2 \alpha_2^0 = a_1 + a_2
\]

\[
1 = F_1 = a_1 \alpha_1^1 + a_2 \alpha_2^1 = a_1 \frac{1+\sqrt{5}}{2} + a_2 \frac{1-\sqrt{5}}{2}
\]

Solving this equation system, we get: \(a_1 = \frac{1}{\sqrt{5}} \) and \(a_2 = -\frac{1}{\sqrt{5}} \).

Thus:

\[
F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n
\]
The roots \(\alpha_1, \ldots, \alpha_k \) of the characteristic equ are not distinct.

Say \(\alpha_1 = \alpha_2 = \ldots = \alpha_t \) repeats \(t \) times.

Then in the solution formula, the portion

\[
\cdots a_1(\alpha_1)^n + a_2(\alpha_2)^n + \cdots + a_t(\alpha_t)^n \cdots
\]

is replaced by:

\[
\cdots a_1(\alpha_1)^n + a_2n^1(\alpha_1)^n + \cdots + a_tn^{t-1}(\alpha_1)^n \cdots
\]

Other steps are the same.
Example

The characteristic equation is: \(x^3 = 3x - 2 \) or \(f(x) = x^3 - 3x + 2 = 0 \).

To solve \(f(x) = 0 \), try \(x = 1 \). We find \(x = 1 \) is a root. So \((x - 1) \) is a factor of \(f(x) \). Thus \(f(x) = (x - 1)(x^2 + x - 2) = (x - 1)(x - 1)(x + 2) \).

So the roots are \(\alpha_1 = \alpha_2 = 1 \) and \(\alpha_3 = -2 \).

The solution has the form: \(F_n = a_1 \cdot 1^n + a_2 \cdot n \cdot 1^n + a_3 \cdot (-2)^n \). Plug in initial values:

\[
\begin{align*}
1 &= F_0 = a_1 + 0 + a_3 \\
2 &= F_1 = a_1 + a_2 - 2a_3 \\
4 &= F_2 = a_1 + 2a_2 + 4a_3
\end{align*}
\]

Solving this: \(a_1 = \frac{8}{9}, a_2 = \frac{4}{3} \) and \(a_3 = \frac{1}{9} \)

Thus: \(F_n = \frac{8}{9} + \frac{4}{3}n + \frac{1}{9}(-2)^n \)