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Abstract We present a model of construction using iterative amorphous
depositions and give a distributed algorithm to reliably build ramps in un-
structured environments. The relatively simple local strategy for interacting
with irregularly shaped, partially built structures gives rise robust adaptive
global properties. We illustrate the algorithm in both the single robot and
multi-robot case via simulation and describe how to solve key technical chal-
lenges to implementing this algorithm via a robotic prototype.

1 Introduction

Robots are best suited for dirty, dull, and dangerous tasks. This paper focuses
on algorithms for the dirty and dangerous task of construction in unstruc-
tured terrain. Applications range from rapid disaster response, like building
levees and support structures, to remote construction in mines or space. The
requirement of working in unstructured terrain frequently coincides with a
lack of infrastructure, such as global positioning or a consistent shared global
state estimate, that simplify coordination of multiple robots and deliberative
planing. Distributed algorithms that use limited local information and coor-
dinate through stigmergy solve this problem and provide scalable solutions.
Robustness to poor sensing and irregular terrain can further be improved by
using amorphous construction materials that comply to obstacles. Such con-
struction is locally reactive, both on an algorithmic level, i.e. where robots
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Fig. 1 Examples of amorphous construction. (a) Amorphous construction in biology. A
termite preparing an amorphous dollop of mud for deposition. Inset shows a mound built
around a tree. (b) Prototype of a construction robot. The robot was remote controlled to
build a ramp using amorphous foam depositions. Inset shows a cone-shaped deposition.

deposit based on local cues, and a physical level, i.e. amorphous construction
materials react by changing shape to conform to their environment.

Our approach is inspired by biological systems, such as mound building ter-
mites [18], that are very adept at building in unstructured terrain, Fig. 1(a).
Their skill combines scalable coordination through stigmergy and the use of
amorphous building materials that interface with an irregular environment.
We would like to endow scalable robot teams with similar skill, however an al-
gorithmic foundation for doing so is lacking. Current models for autonomous
robotic construction focus on assembling pre-fabricated building materials
and cannot accommodate the continuous nature of amorphous building ma-
terials. The contribution of this paper is twofold:(A) A mathematical frame-
work for reasoning about robots that construct with amorphous materials,
and (B) a distributed, locally reactive algorithm for adaptive ramp build-
ing. This work is a step away from robots assembling discrete pre-fabricated
components and instead embracing the messy continuous world, Fig. 1(b).

Section 2 presents mathematical models for amorphous construction and
adaptive ramp building. Section 3 gives a local strategy for creating struc-
tures that robots can climb; Sec. 4 extends those results to include physical
constraints for single and multiple robots. Section 5 discusses future work.

1.1 Related Work

Currently, there is much interest in the topic of robotic construction with mo-
bile robots [3, 4, 6, 10, 11, 15], as well as decentralized algorithms by which
multiple robots can coordinate construction [1, 9, 12, 17]. These systems
are mainly focused on building pre-specified structures using lattice-based
building materials [5, 20]. Lattice-based building blocks have good struc-
tural properties—being strong, stiff, and light—but place assumptions on
the initial environment being level and devoid of obstacles. These methods
are difficult to extend to unstructured environments with irregularly shaped
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obstacles. Furthermore, alignment and attachment restrictions affect all other
aspects of design, for example adding complex assembly order constraints.

In contrast, amorphous building materials—e.g. foam, mud, sandbags or
compliant blocks—sidestep these limitations [13]. They can help compensate
for uncertainty and measurement errors without requiring complex sensing
or reasoning. For example, compliant and amorphous materials are used for
rapidly building flood protection in disaster zones [7, 19] or pouring foun-
dations over irregular terrain. Similarly, the requirement of fixed attachment
orientations can be relaxed by using adhesive in the autonomous robotic con-
struction of curved walls [2, 3]. The closely related work in [16] uses foam to
rapidly adapt robot parts to a unknown tasks instead of adapting structures
to unknown terrain. Digital manufacturing via CAD/CAM, and some large-
scale robotic construction systems, such as [8], also use amorphous materials
to build continuous shapes. While these systems are not specifically focused
on construction in unstructured environments, we can exploit the materials
and design principles to design robots that utilize amorphous materials.

2 Problem Formulation and Questions

We present a solution to the adaptive ramp building problem as a particu-
lar example of a distributed construction task in unstructured terrain. The
problem is to design a deposition and motion strategy that allows reach an
arbitrary goal position, despite irregularly shaped obstacles. Robots can sense
the goal direction, move on partially built structures, and deposit amorphous
materials to make non-climbable structures climbable. Adaptive ramp build-
ing is an example of how amorphous construction materials can be used to
create robust behavior and also provides a primitive behavior for solving more
complex tasks. The remainder of this section presents mathematical models
for continuous structures, amorphous depositions, and climbable structures.

2.1 Mathematical Model for Continuous Structures

We model construction in two or three dimensions. Gravity constrains robots
to move along surfaces on which they can incrementally deposit construction
material. We assume that the construction area Q is a connected, compact,
and finite subset of R1 (or R

2) and the domain of a bounded, non-negative
height function h : Q → R

+. The graph of h, (x, h(x)) x ∈ Q, describes a
structure. Robots move on structures and modify them.

If structures are modeled as functions, depositions are operators on func-
tions. To distinguish the two, function spaces are denoted by scripted letters.
For example, let Q be the space of real-valued, bounded functions on Q, and
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Fig. 2 Parameter Geometry. (a) Robot making an amorphous deposition. (b,c) Relation
of K to the maximal steepness a robot can climb and descend, (solid) without discontinuity
(dashed) with discontinuity. (d) Relation of steepness K to the required ground clearance
to drive over the apex of a cone. (e) A height function on h ∈ Q+ and its projections onto
Lipschitz functions with different parameters K3 > K2 > K1.

Q+ ⊂ Q the subset of non-negative ones. Function application to points is
denoted by parentheses (·) and operator application to functions by brackets
[·]. For example, applying function h ∈ Q+ to a point x ∈ Q is written as
h(x), and applying an operator D : Q+ → Q+ to h is denoted by D[h]. In
the case of functions, all relational symbols should be interpreted pointwise,
e.g. given h, g ∈ Q+, h ≤ g ≡ h(x) ≤ g(x) ∀x ∈ Q.

One limitation of modeling structures as functions is that many physical
terrains have overhangs and are not functions. However, the benefit of this
restrictive model is that it comes with analysis tools, such as continuity and
integration, that can be used to reason about construction algorithms.

2.2 Model for Amorphous Deposition

Robots can deposit amorphous construction material and control its volume
and position, Fig. 1(b). The free surface of each deposition is modeled by a
shape function f ∈ Q while the bottom conforms to the structure, Fig. 2(a).
As a simple, yet sufficiently general, family of shape functions we use cones.
Given an apex position (φ, σ) ∈ Q× R

+ and steepness KD ∈ R
+ let

f(φ,σ)(x) = σ −KD|φ− x|. (1)

The deposition operatorD : Q×Q+ → Q+ models interactions of depositions
with the environment, here simply covering it. Given a structure h ∈ Q+ with
h(φ) < σ, the new structure after deposition f(φ,σ) is given by
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D[f(φ,σ), h](x) = max
x∈Q

(f(x), h(x)). (2)

Given an initial structure h0 ∈ Q+ a structure is built by a sequence of de-
positions characterized by their shape parameters (φ1, σ1), (φ2, σ2), (φ3, σ3), ....
The height function hn after n depositions is defined recursively by

hn(x) = D[f(φn,σn), hn−1](x). (3)

After the n-th deposition, the local reactive rules of each robot direct it to
move on hn and possibly make a deposition resulting in a new structure hn+1.

This deposition model preserves continuity, independent of the particular
parameter choices (φn, σn). In this and the following proofs, let Bε(x) denote
the open ball of radius ε around x, i.e. y ∈ Bε(x) if and only if |y − x| < ε.

Lemma 1 Given a continuous h0 ∈ Q+ and ε ∈ R
+ then ∃δ s.t. ∀x ∈ Q,

∀y ∈ Bδ(x) and any hn created according to (3), hn(y) ∈ Bε(hn(x))).

Proof. By continuity of h0 and compactness of Q, for any given ε ∈ R ∃δ′ s.t.
∀y ∈ Bδ′(x), h0(y) ∈ Bε(h(x)). By construction of hn, δ = min{δ′, ε/KD}
has the above property.

Our proposed solution to the ramp building problem can accommodate un-
certainty in both the deposition location and size, see Sec. 4.1 end. However,
for clarity we assume an exact shape function f in the following proofs.

2.3 Navigable Structures

Building a ramp means turning a structure that robots cannot climb into one
they can climb. As such, any algorithm to adaptively build ramps needs a
tractable description of climbable structures. This section defines the notion
of navigable functions on Q, which represent climbable physical structures.

We use three parameters to describe robot specific motion constraints:
K ∈ R

+, to model the maximum steepness robots can drive up or down,
ǫ ∈ R

+, to model the largest discontinuity robots can freely move past, and
d ∈ R

+, to limit the amount of discontinuity in a small area (i.e. robot length),
Fig. 2(b)–2(d). Formally, navigable structures are locally (parameter d) close
(parameter ǫ) to K−Lipschitz continuous [14, p. 594], i.e

|h(x) − h(y)| ≤ K|x− y| ∀x, y ∈ Q. (4)

Specifically, a function h ∈ Q is called navigable if and only if

|h(x)− h(y)| ≤ ǫ+K|x− y| ∀x, y ∈ Q and |x− y| ≤ d. (5)

To reason about global guarantees of our local algorithms, we construct
the operator PK , defined by (7). It maps any structure to the closest K-
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Lipschitz function that can be built by only adding material, Fig. 2(e). At
a given point x ∈ Q, PK takes the maximum value of any cones that need
to be added so all other points fulfill condition (4). There are two important
properties of PK . Firstly, by construction

PK [h](x) ≥ h(x) ∀h ∈ Q. (6)

Since depositions are additive, it is important PK [h] can be reached by only
adding to h. Secondly, PK [h] returns the smallest function in LK , the space
of K-Lipschitz functions on Q, in the following sense, see Sec. 6 for proof.

Theorem 2 Given any two functions h ∈ Q and g ∈ LK with g ≥ h, the
operator

PK [h](x) = max
y∈Q

{h(y)−K|y − x|} (7)

with K ∈ R
+, has the following properties:

1. PK [h] is K-Lipschitz,
2. g ≥ PK [h].

The following theorem shows that if steeper features are allowed, less ma-
terial needs to be added, Fig. 2(d).

Theorem 3 Given an arbitrary function h ∈ Q and K1,K2 ∈ R
+ with

K1 ≤ K2 the projections onto LK1
and LK2

follow PK2
[h] ≤ PK1

[h].

Proof. For a given point y ∈ Q in (7), h(y) −K2|y − x| ≤ h(y) −K1|y − x|
since the |y − x| is non-negative. ⊓⊔

Given an initial function h0, the next section gives a locally reactive depo-
sition strategy such that after N depositions hN is navigable, i.e. fulfills (5),
and is bounded above by PK [h0].

3 Local Reactive Deposition Algorithm

In a local deposition strategy, robots with limited sensing range r ∈ R
+ (with

r > d) move on top of the structure and react to features in their sensing
range. Algorithm 1 relates local checks and depositions to global properties.
It checks for points that imply a non-navigable feature and deposits in such
a way as to decrease the distance from the current structure to closest K-
Lipschitz structure. Specifically, Alg.1 searches for points |y − x| ≤ d s.t.

|y − x|K + ǫ < |h(y)− h(x)|. (8)
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Fig. 3 Simulations of deposition algorithms. The initial structure h0 is shown as solid
black and the upper bound PK [h0] as a dashed black line. The simulation parameters
are: Q = [0, 2], K = 0.5, KD = 1.5, ǫ = 0.05, and d = 0.2. Depositions progressively
change color, see color-bar. (a) Deposition locations are picked randomly and the height
according to Alg. 1. (b) Deposition locations and heights are picked according to Alg. 2,
with x0 = 0.2 and x∗ = 1.9. As the colors shows, in both cases information about the cliff
on the right propagated backward through stigmergy. Additional motion and deposition
height constraints in Alg. 2 result in a layered structure and smaller depositions. The
simulations incorporate additive noise to the deposition shape function, see Sec. 4.1.

Algorithm 1 Local Deposition Strategy. Pick point pairs that imply a local
non-navigable feature and deposit on the lower one.

1: Given h ∈ Q+.
2: h0 ← h

3: while ∃ x, y ∈ Q s.t. |x− y| ≤ d, K|y − x|+ ǫ < |hn(y) − hn(x)| do

4: if hn(x) < hn(y) then

5: x′ ← x

6: y′ ← y

7: else

8: x′ ← y

9: y′ ← x

10: end if

11: Pick any ω ∈ [ǫ, hn(y′)− hn(x′)−K|x′ − y′|]
12: Deposit at x′ with height ω, i.e. hn+1 = D[f(x′,ω+hn(x′)), hn]
13: end while

3.1 Correctness of Local Deposition Strategy

The correct behavior of Alg. 1 is that after a finite number of depositions
the resulting structure hN is navigable. The proof proceeds in two steps. (A)
Thm. 4 shows progress, i.e. every deposition has a strictly positive volume.
(B) Thm. 5 shows depositions obey the invariant upper bound PK [h0]. By
combining them, Thm. 6 shows correct behavior. Note that since PK [h0] is
the smallest dominating K-Lipschitz function, Alg. 1 is also efficient in the
sense that it avoids unnecessary depositions, i.e. construction beyond the
conservatively navigable PK [h0], see Fig. 3(a).

The volume of the difference between two structures g, h ∈ Q+ is given by

V (g, h) = ||g − h||1 ≡

∫

Q

|g(x)− h(x)| dx. (9)
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Similarly, the volume of a particular deposition is given by V (D[f(φ,σ), h], h).

Theorem 4 (Progress) Given a pair of points x, y ∈ Q s.t. hn(x) < hn(y)
and the property that

|x− y|K + ǫ < |hn(x) − hn(y)|,

depositing on x with a height

ω ∈ [ǫ,
hn(y)− hn(x)

K|x− y|
]

results in a deposition volume V (D[f(x,ω), hn], hn) > ε that is bounded below
by a strictly positive number.

Proof. Note that the deposition height is at least ǫ. By Lem. 1 there ex-
ists some δ s.t. hn maps every Bδ(x) ⊂ Q into Bǫ/3(hn(x)). As a result,

∀p ∈ Bδ(x), h(p) < h(x) + ǫ
3 and h(x) + 2ǫ

3 < D[f(x,ω), hn](p). Therefore,
V (D[f(x,ω), hn], hn) >

∫
Bδ(x)

ǫ
3 = ε > 0. ⊓⊔

Theorem 5 (Invariant) Assuming that KD > K, depositions made with
Alg. 1 leave the mapping onto LKinvariant, i.e. PK [hn] = PK [h0].

See Sec. 6 for proof.

Theorem 6 Given an initial structure h0 ∈ Q+, following Alg. 1 terminates
after a finite number of steps, N ; and for no points in Q does hN fulfill
non-navigability condition (8), i.e. ∀z ∈ Q and x, y ∈ B d

2

(z),

|x− y|K + ǫ ≥ |hN (x) − hN(y)|.

Proof. The expression for the remaining volume V (P [h0], hn) = ||P [h0]− hn||1 =∫
Q
|P [h0](x)− hn(x)|dx can be rewritten as

∫

Q

|P [h0](x) − hn+1(x) + hn+1(x)− hn(x)|dx.

By Thm. 5 and (6), P [h0](x) − hn+1(x) ≥ 0 and hn+1(x) − hn(x) ≥ 0,
therefore

V (P [h0], hn) =

∫

Q

|P [h0](x) − hn+1(x)|dx +

∫

Q

|hn+1(x)− hn(x)|dx

= V (P [h0], hn+1) + V (hn+1, hn).

By Thm. 4 the second term is bounded below by a positive number ε, thus

V (P [h0], hn+1) < V (P [h0], hn)− ε.

Since volume is always non-negative, condition (8) for making depositions
must be violated after a finite number of steps N . ⊓⊔
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Fig. 4 Physical parameters. (a) Relevant robot dimension based on the prototype shown
in Fig. 1(b). (b) Parameters for bounds of an arbitrary deposition shape function.

4 Adaptive Ramp Building

The local deposition algorithm Alg. 1 does not specify which points to pick
if the non-navigability condition (8) is true for multiple pairs, neither does it
consider physical robot size or whether robots can reach deposition locations.
The benefit of this vagueness is generality. Algorithm 1 works in arbitrary
dimensions with an arbitrary number of robots making depositions in any
order. It forms the theoretical underpinning for Alg. 2, Fig. 3, which takes
such physical considerations into account. It gives a local deposition and
motion strategy that allows robot from an arbitrary starting position x0 ∈ Q
to reach a goal position x∗ ∈ Q. By using a more or less conservative ǫ the
built structures can be made more or less smooth.

4.1 Adaptive Ramp Building with a Single Robot

To solve the adaptive ramp building problem via Alg. 1, robots need to iden-
tify point pairs that imply non-navigable features and make depositions. The
strategy in Alg. 2 is to move toward the goal x∗ unless a robot encounters a
non-navigable feature that impedes its progress. In that case, a robot deposits
according to Alg. 1 and backs up to check that the new deposition does not
itself preset a non-navigable feature.

Since deposition and motion constraints depend on the robot’s physical
dimensions, Fig. 4(a), additional parameter constraints are necessary to prove
correctness of Alg. 2. First, to guarantee that robots have enough room to
back up we assume they start at a point x0 ∈ Q on the initial structure h0

and can move freely within a radius r0 ∈ R
+ without making any depositions,

PK [h](y) = h(y), ∀y ∈ Br0(x0) ⊂ Q. (10)

Second, key dimensions of the robot as well as the deposition parameter KD

need to obey the following constraints, Fig. 4(a):
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Algorithm 2 Adaptive ramp building. Given a structure h0, an initial po-
sition x0, and a goal position x∗, the following algorithm builds a ramp over
irregular structures based on local sensing. Assume, w.l.o.g. that x0 < x∗.
1: while x 6= x∗ do

2: Move toward goal until ∃y ∈ [x, x + r] that the pair y and x + d violate condition
(8) , or x = x∗

3: if x 6= x∗ then

4: Move to the lower the point. (Note that all points in [x0, x+ r) are climbable.)
5: Pick height according to Alg.1 and condition (12).
6: x← x− 2d
7: end if

8: end while

KD ≥ K +
ǫ+ lheight

d
, (11)

lheight > ǫ, (12)

r0 > 2d+ lrobot. (13)

Condition (11) limits how far backward new depositions can extend into pre-
viously navigable terrain. It ensures that the motion and deposition strategy
will not direct robots to deposit directly underneath themselves. Condition
(12) ensures that the deposition mechanism has enough clearance to make
depositions that conform with the assumptions in Alg.1. Condition (13), con-
servatively, ensures that a physical robot has enough space to back up.

Theorem 7 Given a robot that fulfills parameter conditions (11)-(13) with
starting position x0 that fulfills (10) following Alg. 2 will reach a goal point
x∗ after a finite number of steps.

Proof. Denote the interval [x0 − r0, x + d] in which no point pairs fulfill (8)
by A (accessible region). Robots stay inside the accessible region at all times
while finding points to deposit on. First, condition (12) guarantees a robot
can make a deposition of height ǫ, as required by Alg. 1. Second, condition
(11) guarantees that depositions with a maximum height of lheight made in
the interval [x, x+ d] will not extend into [x0 − r0, x− d]. As a result, moving
to x − 2d after a deposition guarantees that no point pairs in A fulfill (8).
By (10) and the deposition strategy there are always accessible points, i.e.
[x0 − r0, x0] ⊂ A. By Alg. 1 this algorithm terminates after a finite number
of depositions with x = x∗. ⊓⊔

Figure 3(b) shows a series of depositions made via Alg. 2. This strategy also
guarantees that robots can always reach x0 without requiring additional de-
positions, which could allow robots to replenish supplies. Conversely, the ac-
cessible region provides cooperating robots access the deposition site, Sec. 4.2.

Physical depositions are not perfect cones, Fig. 1(b). Algorithm 2 explicitly
allows for uncertainty in the target structure (via ǫ), but not for deposition
uncertainty. In fact, the upper bound for target structures requires that no
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Fig. 5 Simulations of adaptive ramp building. Parameters are x0 = 0.2, x∗ = 1.9, d = 0.1
and otherwise the same as in Fig. 3. (a) Example of cooperative ramp building. Each robot
is limited to making 25 depositions (indicated by a different color gradients), after which
the active robot signals it is out of material and a new robot begins. (b) Multiple robots

start simultaneously. If a robot becomes stuck, it is treated as a obstacle by other robots.

depositions accidentally make intermediate structures larger than PK [h0].
Following is a short description on how to address this problem and allow
depositions with arbitrary continuous shape functions f (and bounded deriva-
tive f ′

max), as long as f can be sandwiched between two cones, Fig. 4(b). As
long as ldep < ǫ. Alg. 1 (and as a result Alg. 2) still work with the following
substitutions: In Lem. 1 f ′

max takes the place of KD. In Thm. 4 the minimum
height is ǫ − ldep instead of ǫ. In Thm. 5 and condition (11)KD is replaced
with Ka. In addition to uncertainty in shape, this approach of bounding cones
also allows for uncertainty in the exact deposition location and volume.

4.2 Adaptive Ramp Building with Multiple Robots

The locally reactive nature of Alg. 2 makes extension to multiple robots easy.
Without giving detailed motion and communication strategies, this section
outlines two approaches. First, imagine multiple robots with limited depo-
sition capacity cooperatively building a ramp. One robot starts executing
Alg. 2 while the others follow. Once a robot runs out of building material, it
signals for another robot to execute Alg. 2 and returns to a base station at
x0, or it can stop and be treated as an obstacle by other robots, Fig. 5(a).
This coordination strategy works due to the distributed nature of Alg. 2.
Information about deposition locations is communicated through stigmergy.

Second, imagine multiple robots can start at different locations and exe-
cute Alg. 2 concurrently. For example, to build a large ramp toward a beacon
multiple robots could be dropped along the construction path. Each robot
starts building a ramp. However, without initially fulfilling starting condi-
tion (10) robots might become stuck, i.e. cannot move to an appropriate
place to make a deposition, Fig. 5(b) right. Further, without coordination
one robot might deposit on another, Fig. 5(b) middle. Despite these failures,
if one robot initially fulfills (10) the process with successfully complete. Other
robots can provide speed up through parallelism until they become stuck.
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(a) (b) (c)

Fig. 6 Scanning foam deposition mechanism. (a) A scanning carriage holds a downward
facing IR-distance sensor and mixing nozzle. Pressurized foam precursors are delivered to
the nozzle by flexible tubing. (b) Top, Initial obstacle before leveling deposition. Bottom,
final structure after deposition episode. (c) Cross sections of final structure. Each leveling
deposition episode represents one cone-like deposition in Alg. 2.

4.3 Physical Implementation and Experimental Results

We built a remote controlled prototype robot, Fig. 1(b), and a scanning foam
deposition mechanism, Fig. 6(a), for testing solutions to the key technical
challenges presented by Alg. 2. The prototype shows that robots can, in
principle, build and navigate relatively large foam structures. The scanning
deposition mechanism demonstrates autonomous leveling behavior that can
be used to turn the physical three dimensional construction problem into the
simplified two dimensional problem solved by Alg. 2.

One major challenge is designing a deposition mechanism and select-
ing an appropriate material [13]. The prototype robot and scanning depo-
sition mechanism both use two compartment syringes with mixing nozzles
(McMaster-Carr PN: 74695A11 with 74695A63, 7451A22 with 7816A32) and
high expansion poly-urethane casting foam (US-Composites 2 lb foam) to
make amorphous depositions.

The scanning deposition mechanism consists of a mixing nozzle and dis-
tance sensor mounted on moving carriage, Fig 6(a). By running a Alg. 1 along
the direction of carriage travel (with K = 0, ǫ = 2 cm and d covering all of Q)
this mechanism autonomously creates a level structure from amorphous de-
positions. Mounting this mechanism on the front of a robot and treating each
leveling deposition episode as a single deposition in Alg. 2, turns the physical
construction problem into the simplified model. Viewed from the side, each
leveled line under the carriage represents the apex of a conical deposition.
Algorithm 2 simply picks the next point to level.

5 Conclusion

We developed a continuous model for amorphous depositions, and used it to
prove correctness of a distributed algorithm that solves the adaptive ramp
building problem. This example application illustrates how locally reactive
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behavior and amorphous building material together can create reliable build-
ing behavior in unstructured terrain.

Adaptive ramp building can also serve as a base behavior for composing
more complicated behaviors. For example, it could guarantee accessibility to
locations where support structures need to be built. With the ability to con-
sistently encode virtual points in a group of robots, adaptive ramp building
could be used to build arbitrary (K-Lipschitz) structures by building ramps
to a carefully chosen set of virtual points: an approach we plan to explore.

There are a number of ways the presented algorithms could be improved.
Our presentation focused on correctness, not optimality. Robots could be
much smarter about coordination between robots and selection deposition
points to maximize the volume of each deposition, especially if their sensing
radius was much larger than d.

6 Proofs

Proof (Thm. 2). 2.1) Assume to the contrary that ∃x, y ∈ Q s.t.

|PK [h](x)− P [h](y)| > K|x− y|. (14)

Assume w.l.o.g. that PK [h](y) ≤ PK [h](x) and since PK [h] is a positive scalar
function |PK [h](x)−P [h]K(y)| = PK [h](x)−PK [h](y). Rearranging the terms
in (14) leads to the contradiction PK [h](x) − K|x − y| > PK [h](y), since
the max in PK [h](y), see (7), is taken over the entire domain, including x.
Therefore points violating the Lipschitz condition cannot exist in P [h]. ⊓⊔

2.2) Assume to the contrary that there exists a point x ∈ Q s.t. PK [h](x) >
g(x) ≥ h(x). Since there cannot be equality between PK [h](x) and g(x) the
maximization in (7) must take its maximum value at some other point y ∈ Q.
Rearranging PK [h](x) = h(y)−k|x−y| > g(x) results in h(y)−g(x) > k|x−y|,
and since g > h g(y)− g(x) > k|x − y| which is a contradiction, as it would
violate the Lipschitz continuity of g. ⊓⊔

Proof (Thm. 5). First, note that P can be applied to non-continuous func-
tions, specifically continuous structures with a single discontinuous point. Let
h̃n,(φ,σ)(x) = hn(x) + (σ − hn(φ))δφx where δ denotes the Kronecker delta.

Next, since φ is in the search set of max for point PK [hn](x) in (7) hn(φ) ≤
σ = hn(φ) + ω ≤ PK [hn](φ), consequently

h̃n,(φ,σ) ≤ PK [hn]. (15)

Finally, since restricting y ∈ {x, φ} ⊂ Q in (7) results in the same expression

as (2) D[f(φ,σ), hn] = hn+1 ≤ PKD
[h̃n,(φ,σ)]. Thus, hn+1 ≤ PKD

[h̃n,(φ,σ)].

By Thm. 3 and assuming that KD > K, PKD
[h̃n,(φ,σ)] ≤ PK [h̃n,(φ,σ)].

Together Thm. 2.2 and (15) imply that PK [h̃n,(φ,σ)] ≤ PK [hn], which results

in the series of relations hn+1 ≤ PK [h̃n,(φ,σ)] ≤ PK ≤ PK [hn]. And again,
by Thm. 2.2 PK [hn+1] ≤ PK [hn]. However, hn+1 ≥ hn implies PK [hn+1] ≥
PK [hn], thus PK [hn+1] = PK [hn]. By induction, PK [hn] = PK [h0]. ⊓⊔
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