Reading and Exercises:

This is the last problem set before the take-home final. Read the “Advanced” lectures through A7.

(1) Show that for any fixed prime p, ACC$^0[p]$ can simulate a mod-p^2 gate. *Hint:* What can you say about the congruence of n-choose-m modulo p? How about when $m = p$ and $n = pk$ for some integer k?

Then show this for circuits of Boolean and mod-p^e gates, for $e \geq 3$. For non-prime m and $e \geq 2$, can ACC$^0[m]$ circuits simulate a mod-m^e gate? (18 + 18 + 18 = 54 pts.)

(2) Finish the details of proving that mSO[\leq] represents exactly the class REG of regular languages. It suffices to do the forward direction, as lecture showed the main point of the converse where unrestricted Kleene star introduces a second-order existential quantifier. Use marked words in the “layered” style of lectures, and prove by induction on standard regular expressions a lemma showing that chopping off the bottom layer always simulates an existential quantifier on the corresponding variable. Note that this induction needs no case for \cap or \sim (i.e., complements), but the regular languages are closed under both operations—so why isn’t this lemma violated by the counterexample for \cap shown in lecture. (24 pts. Possible open-ended extra credit if you explore other possible ways to circumvent the \cap problem, and/or whether there are cases of small FO[\leq] formulas that require large SF expressions.)

(3) Advanced lecture A4, exercises on page 13, 3 and 4: write formulas in FO($+,\ast$) that represent the numeric predicates “y is a power of 2” and “y is a power of 2 and when x is written as a sum of powers of 2, y appears in that sum.” (6+12 = 18 pts.)

(4) Suppose that R is a *-free regular expression over the “tandem alphabet” $\Sigma \times \Sigma$. Suppose that for all $x \in \Sigma^*$ there is a unique $y \in \Sigma^*$, $|y| = |x|$, such that $[y]$ matches R. (Recall that $[y] = (x_1,y_1)(x_2,y_2)\cdots(x_n,y_n)$ over $\Sigma \times \Sigma$.) Show that the function $f_R(x) = y$ is computable by DLOGTIME-uniform AC0 circuits. (18 pts.)

(5) Same problem as (4), except that now the basis includes “dominoes” (c,ϵ) where $c \in \Sigma$ but ϵ is the empty string, and you are to classify f_R into TC0. Thus R becomes a true “2D regular expression” over $\Sigma^* \times \Sigma^*$, and y need no longer have the same length as x. (12 pts., for 126 regular-credit points on the set. For 12 pts. extra credit, can you find an R for which f_R is complete for TC0 under AC0 reductions?)

(X) Same problem as (4), except that the basis also includes (ϵ,c). Now what? (I don’t know the answer, and wonder if f_R is even guaranteed to be computable now... Points ad-lib.)