Knowledge Representation and Reasoning

Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering
and Center for Cognitive Science
University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

Page 1
Contents

Part I

1. Introduction ... 4
2. Propositional Logic ... 19
3. Predicate Logic Over Finite Models 173
4. Full First-Order Predicate Logic 224
5. Summary of Part I ... 362

Part II

6. Prolog ... 375
7. A Potpourri of Subdomains ... 411
8. SNePS ... 429
9. Belief Revision/Truth Maintenance 511
10. The Situation Calculus .. 569
11. Summary ... 588
Part III

12. Production Systems ... 601
13. Description Logic ... 610
14. Abduction ... 627
5 Summary of Part I

Artificial Intelligence (AI): A field of computer science and engineering concerned with the computational understanding of what is commonly called intelligent behavior, and with the creation of artifacts that exhibit such behavior.

Knowledge Representation and Reasoning (KR or KRR): A subarea of Artificial Intelligence concerned with understanding, designing, and implementing ways of representing information in computers, and using that information to derive new information based on it.

KR is more concerned with belief than “knowledge”. Given that an agent (human or computer) has certain beliefs, what else is reasonable for it to believe, and how is it reasonable for it to act, regardless of whether those beliefs are true and justified.
What is Logic?

Logic is the study of correct reasoning.

There are many systems of logic (logics). Each is specified by specifying:

- **Syntax**: Specifying what counts as a well-formed expression
- **Semantics**: Specifying the meaning of well-formed expressions
 - Intensional Semantics: Meaning relative to a Domain
 - Extensional Semantics: Meaning relative to a Situation
- **Proof Theory**: Defining proof/derivation, and how it can be extended.
Relevance of Logic

Any system that consists of

- a collection of symbol structures, well-formed relative to some syntax;
- a set of procedures for adding new structures to that collection based on what’s already in there.

is a logic.

But:
Do the symbol structures have a consistent semantics?
Are the procedures sound relative to that semantics?

Soundness is the essence of “correct reasoning.”
Given that a Knowledge Base is represented in a language with a well-defined syntax, a well-defined semantics, and that reasoning over it is a well-defined procedure, a KR system is a logic. KR research can be seen as a search for the best logic to capture human-level reasoning.
Relations Among Inference Problems

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Derivation</th>
<th>Theoremhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1, \ldots, A_n \vdash Q$</td>
<td>\Leftrightarrow</td>
<td>$\vdash A_1 \land \ldots \land A_n \Rightarrow Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semantics</th>
<th>Logical Entailment</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1, \ldots, A_n \models Q$</td>
<td>\Leftrightarrow</td>
<td>$\models A_1 \land \ldots \land A_n \Rightarrow Q$</td>
</tr>
</tbody>
</table>

$(\Downarrow \text{Soundness})$ \hspace{1cm} $(\Uparrow \text{Completeness})$

Page 366
Inference/Reasoning Methods

Given a KB/set of assumptions \mathcal{A} and a query Q:

- Model Finding
 - Direct: Find satisfying models of \mathcal{A}, see if Q is True in all of them.
 - Refutation: Find if $\mathcal{A} \cup \{\neg Q\}$ is unsatisfiable.

- Natural Deduction
 - Direct: Find if $\mathcal{A} \vdash Q$.

- Resolution
 - Direct: Find if $\mathcal{A} \vdash Q$ (incomplete).
 - Refutation: Find if $\bigwedge \mathcal{A} \wedge \neg Q$ is inconsistent.
Classes of Logics

- Propositional Logic
 - Finite number of atomic propositions and models.
 - Model finding and resolution are decision procedures.

- Finite-Model Predicate Logic
 - Finite number of terms, atomic formulae, and models.
 - Reducible to propositional logic.
 - Model finding and resolution are decision procedures.

- First-Order Logic
 - Infinite number of terms, atomic formulae, and models.
 - Not reducible to propositional logic.
 - There are no decision procedures.
 - Resolution plus factoring is refutation complete.

Page 368
Logics We Studied

1. Standard Propositional Logic
2. Clause Form Propositional Logic
3. Standard Finite-Model Predicate Logic
4. Clause Form Finite-Model Predicate Logic
5. Standard First-Order Predicate Logic
6. Clause Form First-Order Predicate Logic
Proof Procedures We Studied

1. Direct model finding: truth tables, decreasoner, relsat (complete search) walksat, gsat (stochastic search)
2. Semantic tableaux (model-finding refutation)
3. Wang algorithm (model-finding refutation), wang
4. Hilbert-style axiomatic (direct), brief
5. Fitch-style natural deduction (direct)
6. Resolution (refutation), prover, SNARK
Utility Notions and Techniques

1. Material implication

2. Possible properties of connectives
 commutative, associative, idempotent

3. Possible properties of well-formed expressions
 free, bound variables
 open, closed, ground expressions

4. Possible semantic properties of wffs
 contradictory, satisfiable, contingent, valid

5. Possible properties of proof procedures
 sound, consistent, complete,
 decision procedure, semi-decision procedure
More Utility Notions and Techniques

5. Substitutions
 application, composition

6. Unification
 most general common instance (mgci),
 most general unifier (mgu)

7. Translation from standard form to clause form
 Conjunctive Normal Form (CNF),
 Skolem functions/ constants

8. Resolution Strategies
 subsumption, unit preference, set of support

9. The Answer Literal
Unification

- Unification is a least-commitment method of choosing a substitution for Universal Instantiation (∀E).
- Unification is correct pattern matching when both structures have variables.
- Unification is generally needed in backward chaining systems.
AI-Logic Connections

<table>
<thead>
<tr>
<th>AI</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>rules</td>
<td>non-atomic assumptions</td>
</tr>
<tr>
<td>or domain rules</td>
<td>or non-logical axioms</td>
</tr>
<tr>
<td>inference engine procedures</td>
<td>rules of inference</td>
</tr>
<tr>
<td>knowledge base</td>
<td>derivation</td>
</tr>
</tbody>
</table>