Linearizability vs. Sequential Consistency
- Both care about giving an illusion of a single copy.
 - From the outside observer, the system should (almost) behave as if there’s only a single copy.
- Linearizability cares about time.
- Sequential consistency cares about program order.
- We need to look deeper into both concepts to understand the difference.

Linearizability
- Linearizability
 - Should provide the behavior of a single copy
 - A read operation returns the most recent write, regardless of the clients.
 - All subsequent read ops should return the same result until the next write, regardless of the clients.
- "The most recent" & "all subsequent"
 - Determined by time.
- Complication
 - In the presence of concurrency, read/write operations overlap.

Linearizability Complications
- Non-overlapping ops: time-based clear-cut ordering
 - a.write(x)
 - a.read() → x
 - a.read() → 0
 - a.read() → x
- Overlapping ops: not clear-cut with time
 - a.write(x)
 - a.read() → 0
 - a.read() → x
 - a.read() → x

Linearizability Examples
- Example 1
 - a.write(x)
 - a.read() → x
 - a.read() → x
- Example 2
 - a.write(x)
 - a.read() → 0
 - a.read() → x
 - a.read() → x
Linearizability Examples

- Example 3
  ```
  a.write(x)
  a.read() -> x
  a.read() -> y
  a.read() -> y
  a.write(y)
  ```

CSE 486/586 Administrivia

- PA3 deadline: 3/29 (Friday)
- Anonymous feedback form still available.
- Please come talk to me!

Chain Replication

- One technique to provide linearizability

```
+-----------------
| Head            |
| N0               |
+-----------------
| Reads           |
| N1               |
| Writes          |
| N2               |
| Replies         |
| Tail            |
```

Passive (Primary-Backup) Replication

- Request Communication: the request is issued to the primary RM and carries a unique request id.
- Coordination: Primary takes requests atomically, in order, checks id (resends response if not new id.)
- Execution: Primary executes & stores the response
- Agreement: If update, primary sends updated state/result, req-id and response to all backup RMs (1-phase commit enough).
- Response: primary sends result to the front end

Linearizability vs. Sequential Consistency

- Both care about giving an illusion of a single copy.
 - From the outside observer, the system should (almost) behave as if there’s only a single copy.
- Linearizability cares about time.
- Sequential consistency cares about program order.

Sequential Consistency

- Sequential consistency
 - Should provide the behavior of a single copy
 - A read operation returns the most recent write, regardless of the clients.
 - All subsequent read ops should return the same result until the next write, regardless of the clients.
 - “The most recent” & “all subsequent”
 - Ops within the same client: Determined by time (program order)
 - Ops across clients: Not determined by time, i.e., we can reorder them.
 - i.e., we just need to preserve the program order
Sequential Consistency

- To the outside observer, the system needs to provide a global ordering of operations where:
 - It works like a single copy.
 - The ordering of ops coming from the same client is preserved.

- Linearizability vs. sequential consistency
 - With sequential consistency, the system has freedom as to how to interleave operations coming from different clients, as long as the ordering from each client is preserved.
 - With linearizability, the interleave across all clients is pretty much determined already based on time.

Sequential Consistency Examples

- Example 1
 - P1: a.write(A)
 - P2: a.write(B)
 - P3: a.read()→B a.read()→A
 - P4: a.read()→B a.read()→A

- Example 2
 - P1: a.write(A)
 - P2: a.write(B)
 - P3: a.read()→B a.read()→A
 - P4: a.read()→A a.read()→B

Active Replication

- Request Communication: The request contains a unique identifier and is multicast to all by a reliable totally-ordered multicast.
- Coordination: Group communication ensures that requests are delivered to each RM in the same order (but may be at different physical times!).
- Execution: Each replica executes the request. (Correct replicas return same result since they are running the same program, i.e., they are replicated protocols or replicated state machines)
- Agreement: No agreement phase is needed, because of multicast delivery semantics of requests
- Response: Each replica sends response directly to FE

Summary

- Linearizability
 - The ordering of operations is determined by time.
 - Primary-backup can provide linearizability.
 - Chain replication can also provide linearizability.

- Sequential consistency
 - The ordering of operations preserves the program order of each client.
 - Active replication can provide sequential consistency.

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC).