Recap

- Digital certificates
 - Binds a public key to its owner
 - Establishes a chain of trust
- TLS
 - Provides an application-transparent way of secure communication
 - Uses digital certificates to verify the origin identity
- Authentication
 - Needham-Schroeder & Kerberos

Byzantine Fault Tolerance

- Fault categories
 - Benign: failures we've been talking about
 - Byzantine: arbitrary failures
- Benign
 - Fail-stop & crash: process halted
 - Omission: msg loss, send-omission, receive-omission
 - All entities still follow the protocol
- Byzantine
 - A broader category than benign failures
 - Process or channel exhibits arbitrary behavior.
 - May deviate from the protocol
 - Can be malicious (attacks, software bugs, etc.)

Result: with f faulty nodes, we need $3f + 1$ nodes to tolerate their Byzantine behavior.

- Fundamental limitation
- Today's goal is to understand this limitation.
- Next lecture: a protocol that provides this guarantee.

How about Paxos (that tolerates benign failures)?

- With f faulty nodes, we need $2f + 1$ to obtain the majority.

“Byzantine”

- Leslie Lamport (again!) defined the problem & presented the result.
- “I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves.”
- “At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem.”
- “...The obviously more appropriate Byzantine generals then occurred to me.”

Introducing the Byzantine Generals

- Imagine several divisions of the Byzantine army camped outside of a city
- Each division has a general.
- The generals can only communicate by a messenger.
Introducing the Byzantine Generals

- They must decide on a common plan of action.
 - What is this problem?
- But, some of the generals can be traitors.

Requirements

- All loyal generals decide upon the same plan of action (e.g., attack or retreat).
- A small number of traitors cannot cause the loyal generals to adopt a bad plan.
- There has to be a way to communicate one’s opinion to others correctly.

The Byzantine Generals Problem

- The problem boils down to how a single general sends the general’s own value to the others.
 - Thus, we can simplify it in terms of a single commanding general sending an order to lieutenant generals.
- Byzantine Generals Problem: a commanding general must send an order to \(n-1 \) lieutenant generals such that
 - All loyal lieutenants obey the same order.
 - If the commanding general is loyal, then every loyal lieutenant obeys the order the commanding general sends.
- We’ll try a simple strategy and see if it works.
 - All-to-all communication: every general sends the opinion & repeatedly sends others’ opinions for reliability.
 - Majority: the final decision is the decision of the majority
 - Similar to reliable multicast

Understanding the Problem

- Can three generals agree on the plan of action?
 - One commander
 - Two lieutenants
 - One of them can be a traitor.
 - This means that we have \(2f + 1 \) nodes.
- Protocol
 - Commander sends out an order (“attack”/“retreat”).
 - Lieutenants relay the order to each other for reliability.
 - Lieutenants follow the order of the commander.
- Can you come up with some scenarios where this protocol doesn’t work?

Question

- PA4 due this Friday @ 2:59pm.
- Final: 5/6, Monday, 3:30pm – 6:30pm
 - Davis 101
 - Everything up to this Friday
- Anonymous feedback form still available.
- Please come talk to me!
Understanding the Problem

With three generals, it is impossible to solve this problem with one traitor.

Why not Paxos?
- Paxos works with $2f + 1$ nodes when f nodes are faulty.
- In Paxos, f nodes can fail (or disappear) from the system, but they don’t lie.

In the Byzantine generals problem, f nodes might be alive and lie.
In general, you need $3f + 1$ nodes to tolerate f faulty nodes in the Byzantine generals problem.

Why?

Intuition for the Result

Going back to the original problem setting
- Each one expresses its opinion (yes/no), we choose the majority’s opinion.

Question: how many votes do I need?
- In Paxos, I need $f + 1$ votes (agreeing on either yes or no) out of $2f + 1$ nodes, since that’s the majority.
- Will this work with Byzantine failures?

Let’s apply this to the Byzantine generals problem.
- Let’s say we obtain $f + 1$ votes on yes.
- Up to f nodes can lie → getting $f + 1$ votes means that the result can be determined by the Byzantine nodes.
- E.g., let’s say we have $2f + 1$ nodes, and we get $f + 1$ votes on yes. f (faulty) nodes lie (say yes), one non-faulty node says yes, and f non-faulty nodes say no.

What do we need?

We need more votes from the honest nodes than the faulty nodes.
- So the faulty nodes can’t influence the outcome.
- If we obtain $2f + 1$ votes, then we have at least $f + 1$ votes from honest nodes, one more than the number of potential faulty nodes.
- This way, we can make sure that honest nodes determine the outcome.

But, f nodes still might just simply fail, not reply at all.
- In order to get $2f + 1$ votes under the possibility of f no replies.
- We need at least $3f + 1$ nodes in total.

Summary

Byzantine generals problem
- They must decide on a common plan of action.
- But, some of the generals can be traitors.

Requirements
- All loyal generals decide upon the same plan of action (e.g., attack or retreat).
- A small number of traitors cannot cause the loyal generals to adopt a bad plan.

Impossibility results
- With three generals, it’s impossible to reach a consensus with one traitor.
- In general, with less than $3f + 1$ nodes, we cannot tolerate f faulty nodes.

Acknowledgements

These slides contain material developed and copyrighted by Indranil Gupta (UIUC).