Recap

- **Spanner**
 - Geo-distributed database
 - Supports a relational data model with a SQL-like language
 - Supports distributed transactions with linearizability
- **Transaction ordering for linearizability**
 - Tight time synchronization
 - TrueTime-based timestamps
 - Principle: using a time value that is certain
- **TrueTime**
 - TT.now() returns an interval [earliest, latest].
 - TT.after(t) is true if t has definitely passed.
 - TT.before(t) is true if t has definitely not arrived.

Byzantine Fault Tolerance

- **Fault categories**
 - **Benign**: failures we've been talking about
 - Byzantine: arbitrary failures
 - **Benign**
 - Fail-stop & crash: process halted
 - Omission: msg loss, send-omission, receive-omission
 - All entities still follow the protocol
 - **Byzantine**
 - A broader category than benign failures
 - Process or channel exhibits arbitrary behavior
 - May deviate from the protocol
 - Can be malicious (attacks, software bugs, etc.)

Result: with **f** faulty nodes, we need **3f + 1** nodes to tolerate their Byzantine behavior.

- Fundamental limitation
- Today's goal is to understand this limitation.
- Next lecture: a protocol that provides this guarantee.

How about **Paxos** (that tolerates benign failures)?

- With **f** faulty nodes, we need **2f + 1** to obtain the majority.

“Byzantine”

- Leslie Lamport (again!) defined the problem & presented the result.
- “I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra's dining philosopher's problem received much more attention than it deserves.”
- “At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem.”
- “…The obviously more appropriate Byzantine generals then occurred to me.”

Introducing the Byzantine Generals

- Imagine several divisions of the Byzantine army camped outside of a city
- Each division has a general
- The generals can only communicate by a messenger.
Introducing the Byzantine Generals

- They must decide on a common plan of action.
 - What is this problem?
- But, some of the generals can be traitors.

Requirements

- All loyal generals decide upon the same plan of action (e.g., attack or retreat).
- A small number of traitors cannot cause the loyal generals to adopt a bad plan.
- There has to be a way to communicate one's opinion to others correctly.

The Byzantine Generals Problem

- The problem boils down to how a single general sends the general’s own value to the others.
 - Thus, we can simplify it in terms of a single commanding general sending an order to lieutenant generals.
- Byzantine Generals Problem: a commanding general must send an order to \(n-1 \) lieutenant generals such that
 - All loyal lieutenants obey the same order.
 - If the commanding general is loyal, then every loyal lieutenant obeys the order the commanding general sends.
- We’ll try a simple strategy and see if it works.
 - All-to-all communication: every general sends the opinion & repeatedly sends others’ opinions for reliability.
 - Majority: the final decision is the decision of the majority
 - Similar to reliable multicast

Question

- Can three generals agree on the plan of action?
 - One commander
 - Two lieutenants
 - One of them can be a traitor.
 - This means that we have \(2f + 1 \) nodes.
- Protocol
 - Commander sends out an order (“attack”/“retreat”).
 - Lieutenants relay the order to each other for reliability.
 - Lieutenants follow the order of the commander.
- Can you come up with some scenarios where this protocol doesn’t work?

Understanding the Problem

Commander

Lieutenant 1
- He said “retreat”

Lieutenant 2

PA4 due next Friday @ 1:59pm
- Final: 5/14, Wednesday, 3:30pm – 6:30pm
 - Norton 112
 - Everything
 - No restroom use (this quickly becomes chaotic)
 - Bring an erasure, if you’d like.

Important things about the final week
- PA4 scores will be released by Wednesday.
- Thursday and Friday office hours are for PA4.
- No office hours from Monday to Wednesday
- Scoring will hopefully be done by the end of the week.
Understanding the Problem

With three generals, it is impossible to solve this problem with one traitor.

Why not Paxos?
- Paxos works with $2f + 1$ nodes when f nodes are faulty.
- In Paxos, f nodes can fail (or disappear) from the system, but they don't lie and they are not malicious.

In the Byzantine generals problem, f nodes might be alive and malicious.
In general, you need $3f + 1$ nodes to tolerate f faulty nodes in the Byzantine generals problem.
Why?

Intuition for the Result

Problem setting:
- General question: how do we reach consensus in the presence of faulty (malicious) nodes?
- Let's say each honest node runs a deterministic algorithm that gives the same answer (yes/no).
- We choose a quorum's answer, since there can be malicious nodes that give a wrong answer intentionally.

Question: how many votes do I need?
- In Paxos, I need $f + 1$ votes agreeing on either yes or no) out of $2f + 1$ nodes, since that's the majority.
- Will this work with Byzantine failures?
 - i.e., just like Paxos, let's just collect $f + 1$ answers.
 - The principle is that the outcome should be determined by the answers of the honest nodes, not the malicious nodes.

Let's apply this to the Byzantine generals problem.
- Principle: The outcome should be determined by the answers of the honest nodes, not the malicious nodes.
- Let's say we obtain $f + 1$ votes.
- Up to f nodes can be malicious → getting $f + 1$ votes means that the result can contain up to f wrong answers.

Example
- $2f + 1$ nodes, and outcome by $f + 1$ votes.
- f faulty nodes say no.
- f non-faulty nodes say yes
- 1 non-faulty node says yes.
- Ideal outcome?
- Actual outcome?
- What do we need?

We need more votes from the honest nodes than the faulty nodes, so the faulty nodes can't influence the outcome.

Unlike Paxos, we can't simply collect $f + 1$ votes, since malicious nodes might give wrong answers.

We need to obtain $2f + 1$ answers. Then we have at least $f + 1$ votes from honest nodes, one more than the number of potential faulty nodes.

Then we need to see if $f + 1$ votes say the same thing out of $2f + 1$.

This way, we can make sure that honest nodes determine the outcome.

But, f nodes still might just simply fail, not reply at all.

How do we get $2f + 1$ replies when there are f failed nodes?

Thus, we need at least $3f + 1$ processes in total to tolerate f faulty processes.
Summary

• Byzantine generals problem
 – They must decide on a common plan of action.
 – But, some of the generals can be traitors.
• Requirements
 – All loyal generals decide upon the same plan of action (e.g., attack or retreat).
 – A small number of traitors cannot cause the loyal generals to adopt a bad plan.
• Impossibility results
 – With three generals, it’s impossible to reach a consensus with one traitor.
 – In general, with less than $3f + 1$ nodes, we cannot tolerate f faulty nodes.

Acknowledgements

• These slides contain material developed and copyrighted by Indranil Gupta (UIUC).