CSE 191, Class Note 08
Computer Sci & Eng Dept
SUNY Buffalo
Outline

1 Mathematical Induction
Suppose we have a ladder of \(n \) rungs. Let’s say we can guarantee two things:

- We can reach the first rung of the ladder.
- If we can reach the \(i \)th rung of the ladder, then we can reach the next (i.e., the \((i + 1) \)st) rung.

What can we conclude, then?

- We can conclude that we can reach the \(n \)th rung for any \(n \).
Similar to the above argument, we have a proof method called mathematical induction:

- Goal: to prove $P(n)$ is true (where n is a positive integer).
- First step (called the basis step): show $P(1)$ is true.
- Second step (called the inductive step): show $P(k) \rightarrow P(k + 1)$ is true for every positive integer k. Here $P(k)$ is called the inductive assumption (or inductive hypothesis).

Clearly, the above method makes sense because from

$$P(1), P(1) \rightarrow P(2), P(2) \rightarrow P(3), \ldots, P(n - 1) \rightarrow P(n)$$

we can easily get $P(n)$.
First example

Example: Show that, for any positive integer \(n \), \(2^n > n \).

Proof: Basis step: When \(n = 1 \), we have \(2^n = 2 > 1 = n \). So the proposition is true for \(n = 1 \).

Inductive step: Assume that the proposition is true for \(n = k \) (where \(k \) is a positive integer), i.e., \(2^k > k \).

Now we prove that it is also true for \(n = k + 1 \), i.e., \(2^{k+1} > k + 1 \).

From \(2^k > k \) we get that \(2^{k+1} = 2 \times 2^k > 2 \cdot k \geq k + 1 \).

This completes the induction proof.
In the first example, we have shown two things:

(a) \(2^1 > 1\);

(b) If \(2^k > k\) for positive integer \(k\), then \(2^{k+1} > k + 1\).

Hence, we have the following statements being true:

(1) \(2^1 > 1\); (This is (a))

(2) If \(2^1 > 1\), then \(2^2 > 2\); (This is (b) when \(k = 1\))

(3) If \(2^2 > 2\), then \(2^3 > 3\); (This is (b) when \(k = 2\))

\[\vdots\]

(n) If \(2^{n-1} > n - 1\), then \(2^n > n\); (This is (b) when \(k = n - 1\))

Putting all of them together, we see that \(2^n > n\).
Example 2: Show that $3 | n^3 - n$ for positive integer n.

Proof: **Basis step:** When $n = 1$, we have $n^3 - n = 0$. Clearly, $3 | n^3 - n$.

Inductive step: Assume that $3 | k^3 - k$ for positive integer k. We’ll show that $3 | (k + 1)^3 - (k + 1)$.

It is easy to see $(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 2k = (k^3 - k) + 3(k^2 + k)$.

Since $3 | k^3 - k$, we can write $k^3 - k = 3j$ where j is an integer. So,

$$(k + 1)^3 - (k + 1) = 3j + 3(k^2 + k) = 3(j + k^2 + k)$$

Hence, $3 | (k + 1)^3 - (k + 1)$.
Understanding second example

In the second example, we have shown two things:

(a) $3 | 1^3 - 1$;
(b) If $3 | k^3 - k$ for positive integer k, then $3 | (k + 1)^3 - (k + 1)$.

Hence, we have the following statements being true:

(1) $3 | 1^3 - 1$; (This is (a))
(2) If $3 | 1^3 - 1$, then $3 | 2^3 - 2$; (This is (b) when $k = 1$)
(3) If $3 | 2^3 - 2$, then $3 | 3^3 - 3$; (This is (b) when $k = 2$)

\[\ldots \]
(n) If $3 | (n - 1)^3 - (n - 1)$, then $3 | n^3 - n$; (This is (b) when $k = n - 1$)

Putting all of them together, we see that $3 | n^3 - n$.
In the mathematical induction we just studied, the constraint is that \(n \) is a positive integer. In fact, we can have variants:

- \(n \) is a non-negative integer;
- or, \(n \) is a positive integer \(\geq m \).

To deal with the above situations, all we need is:

- adjust the basis step, so that it considers \(n = 0 \) or \(n = m \) instead of \(n = 1 \).
- adjust the inductive step, so that \(P(k) \rightarrow P(k + 1) \) is proved for all non-negative integer \(k \) or all integer \(k \geq m \).
Example for variant

Example:

Suppose that, for a finite set S, $|S| = n$. Show that $|P(S)| = 2^n$.

- Note that we cannot consider $n = 1$ in the basis step! Because S could be the empty set and thus n could be 0.
- That means, we have to make sure the above statement is true for all non-negative integer n (not just all positive integer n).
- If we consider $n = 1$ in the basis step, then the entire proof ignores the possibility of $n = 0$.
- Similarly, when we do the inductive step, we cannot just prove it for all positive integer k. We should prove it for all non-negative integer k.
Example for variant

Proof: Basis step: When $n = 0$, S is the empty set. Hence, $P(S) = \{\emptyset\}$, which means $|P(S)| = 1 = 2^0$.

Inductive step: Assume that, for all S such that $|S| = k$ (where k is a non-negative integer), $|P(S)| = 2^k$.

Now we show that, for all S' such that $|S'| = k + 1$, $|P(S')| = 2^{k+1}$.

Clearly, all S' such that $|S'| = k + 1$ can be written as $S' = S \cup \{a\}$, where $|S| = k$ and a is not in S.

To count $|P(S')|$, i.e., the number of subsets of S', we only need to count:

(a) $|P(S)|$, i.e., the number of subsets of S;
By the inductive assumption, we know that $|P(S)| = 2^k$.

(b) The number of subsets of S' that contains a.
We note that each subset containing a uniquely corresponds to a subset not containing a (by eliminating a from the subset).
Hence, this number is also $|P(S)| = 2^k$.

We sum up these two numbers and get that $|P(S')| = 2^k + 2^k = 2^{k+1}$.

We have another important variant called \textit{strong induction}:

- Goal: to prove \(P(n) \) is true (where \(n \) is a positive integer).
- Basis step: show \(P(1) \) is true.
- Inductive step: show \(P(1) \land P(2) \land \cdots \land P(k) \rightarrow P(k+1) \) is true for every positive integer \(k \).

Clearly, the above method makes sense because from \(P(1), P(1) \rightarrow P(2), P(1) \land P(2) \rightarrow P(3), \ldots, P(1) \land P(2) \land \cdots \land P(n-1) \rightarrow P(n) \) we can easily get \(P(n) \).

Example:

Show that any positive integer \(n > 1 \) can be written as the product of primes.

Note this is actually part of the \textit{fundamental theorem of arithmetic}. Here we prove it using \textit{strong induction}.

Proof: Basis step: Here we consider \(n = 2 \) in stead of \(n = 1 \), because there is a restriction \(n > 1 \).

When \(n = 2 \), since 2 is by itself a prime, the proposition is clearly true.
Example for strong induction

Inductive step: Assume every n such that $1 < n \leq k$ (where k is an integer > 1) can be written as the product of primes.

Now we show that $k + 1$ can also be written as the product of primes. We consider two cases:

Case A: $k + 1$ is a prime. Then we are done.

Case B: $k + 1$ is a composite.

- Then there exist positive integers $a > 1$ and $b > 1$ such that $k + 1 = a \cdot b$.
- Since $a > 1$, we know $a \geq 2$, and thus $b \leq (k + 1)/2 < k$.
- By the inductive assumption, b can be written as the product of primes.
- Similarly, a can also be written as the product of primes.
- Combining these two results, we see that $k + 1 = a \cdot b$ can be written as the product of primes.
Understanding example for strong induction

In this example, we have shown two things:
(a) 2 can be written as the product of primes;
(b) If all n such that $1 < n \leq k$ can be written as the product of primes, then $k + 1$ can be written as the product of primes.

Hence, we have the following statements being true:

(1) 2 can be written as the product of primes; (This is (a))

(2) If 2 can be written as the product of primes, then 3 can be written as the product of primes; (This is (b) when $k = 2$)

(3) If 2 and 3 can be written as the product of primes, then 4 can be written as the product of primes; (This is (b) when $k = 3$) . . .

$(n-1)$ If 2, 3, . . . , and $n − 1$ can be written as the product of primes, then n can be written as the product of primes; (This is (b) when $k = n − 1$)

Putting all of them together, we see that n can be written as the product of primes.