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Abstract

Radiation therapy uses ionizing radiation to treat cancer-
ous tumors. This paper reports our experiences with the
parallelization of a real-world 3-D radiation therapy treat-
ment planning (RTTP) system on a wide range of plat-
forms, including SMP servers, Cray J916 vector machines,
and clusters of SMPs. The RTTP system is a meta-problem,
comprising two major loosely-coupled components: dose
calculation and genetic optimization. To accelerate the
planning process, we integrated the two components and
parallelized the system on a wide range of platforms us-
ing vendors’ native optimization tools and Stanford SUIF
parallelizing compiler. For comparison, we also manu-
ally parallelized the system using multithreading, message-
passing, and distributed shared memory tools. The exper-
imental results showed that none of the automatic paral-
lelization tools were capable of handling the real-world ap-
plication, although plenty of parallelism exists in the codes.
The difficulty is due to RTTP’s dynamic and irregular com-
putational behaviors.

1 Introduction

Radiation therapy using external photon beams is an in-
tegral part of the treatment of the majority of cancerous
tumors [7]. As shown in Figure 1, its practice works in
a way that beams of photons are directed at the tumor in
a patient from different directions, thereby concentrating
radiation dose in the tumor. The maximum dose that can
be delivered to the tumor must be subject to its neighbor-
ing normal organs’ tolerance to radiation damage. Due to
the time constraints in clinical practice, computerized treat-
ment planning was limited for many years to producing
dose distribution on one or a few planes of the patient’s
body. The beams were assumed to be coplanar with the pa-
tient planes. A 3-D treatment planning process is too time�This research was supported in part by a grant from Cray Research,
Inc. and NSF Grant EIA-9729828

consuming to be employed in clinical workstations. The
objective of this work is to accelerate the therapy planning
process by using parallel computing techniques.
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Figure 1: Radiation therapy treatment planning

We experiment with a radiation therapy treatment plan-
ning system (RTTP), which is routinely used to plan treat-
ments for a majority of patients at the Gershenson Radia-
tion Oncology Centers at Harper Hospital in Detroit [4].
The system is a meta-problem, comprising two compo-
nents: dose calculation (VRSplan) and genetic optimiza-
tion (GENplan). The GENplan code is to select a set of
beams towards the tumor, each with a corresponding rela-
tive intensity weight. A beam is a description of a partic-
ular radiation field, its orientation in space, energy, shape,
wedge, etc. Each beam will produce a particular dose dis-
tribution within the patient body. A plan is a total dose dis-
tribution obtained by summing, for each point being con-
sidered, the dose from each selected beam in proportion
to its selected weight. The quality of a plan is judged by
evaluating this dose distribution in relation to the particular
constraints imposed by the physician. The sampling algo-
rithm of the GENplan code is given as follows:

GENplan:



Dose calculation (VRSplan)
While not convergent

Create the initial population
Evaluate each member
Transform score into fitness
Make a new generation

Mark some to die,
Clone the best (elitism)
Clone the best with mutated indices
Clone the best with mutated weights
Sexually mate, with some mutations
Randomly create a few

The GENplan process relies on a mechanism for the def-
inition of radiation beams, provision of patient informa-
tion and dose constraints, and dose calculation. VRSplan
is a broadly capable software package for virtual simula-
tion and three-dimensional dose calculation. It works in
the way as follows.

VRSplan:
Read patient anastruct data
Read point description data of rational organs
Do for each beam

Read beam description data
Calculate the dose of each pont of relational organs
Write the dose into a file which is to be sent to GENplan

The GENplan and VRSplan were initially loosely cou-
pled. They were run on a DEC 5000 workstation and an
SGI Indigo workstation, respectively. For compatibility,
data were communicated in ASCII format via off-line file
exchanges in ASCII text format. As shown in Figure 2,
once the desired beams and points were created on the SGI
system, their description files were transferred to the DEC
machine. The routing optVRSplan is then invoked and the
doses to the sampling points are then calculated for each
beam. The results are then written to output files that are
then transferred back to the SGI computer for optimization
studies.
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Figure 2: The initial system environment

Studies with clinical cases demonstrate the ability of
GENplan to produce optimization results which compare

favorably to both simulated annealing and conventional
planning. Geometric selection of beam orientation is pos-
sible and leads to significant reduction in the number of
beams to be considered. GENplan is seen to be a successful
optimizer of different evaluation functions, and so the clini-
cal relevance of the optimization process depends critically
on the function being optimized. On the other hand, on a
purely practical level, the current code is not an integrated
system and has not been engineered for speed. Calculat-
ing 100-200 beams takes three hours on VRSplan, and ten
runs of GENplan on a population of 50 takes about three
hours on the Indigo. In order to move the code from the
lab to the clinic, different platforms and parallel computing
techniques will be necessary.

In the subsequent sections, we will relate our experi-
ences with the parallelization of the RTTP on various plat-
forms, including SUN Enterprise SMPs, a Cray J916 vec-
tor machine, and a cluster of SMPs, based on SUN and
Cray’s native parallelizing tools and Stanford SUIF com-
pilers. The results from automatic parallelization tools will
be compared with those from manually parallelized codes.

2 Parallel RTTP on SMP Servers

Symmetric shared-memory multiprocessors, built out of
the latest microprocessors, are now a widely available class
of powerful machines. Our first experiment was conducted
on a SUN E3000 with four 250MHz-UltraSPARCs proces-
sors and 512MB memory. We employed two approaches to
parallelize the RTTP system: the native optimization tool
(SUN Workshop Compiler C4.2) and the Stanford SUIF
parallelizing compiler.

2.1 Performance profiling for RTTP

We first profiled the sequential RTTP on the E3000 without
using any compiler optimizations. Table 1 presents the re-
sults generated by a SUN Workshop performance profiling
tool. The RTTP calling graph are given in Figure 3. The
numbers along the graph edge represent the calling times
of sub-routines.

Table 1: Initial profiling data of RTTP

%Time Seconds Calls msec/call Name
99.9 1727.90 1 main
61.4 1060.92 49403 21.48 sumbeams
12.9 222.83 22572 9.84 scatterpoint dose
8.1 139.96 49565 2.82 evaluateplan dose
7.6 131.32 148016 0.89 hpsort
5.6 96.76 49743 1.95 evaluateplan prob
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Figure 3: Calling graph of RTTP program

Table 1 shows that of the 1727.90 seconds total execu-
tion time, more than 60% was spent by a kernel function
“sum beams”. It was executed 49403 times with 21.48 sec-
onds each invocation. The function is used in GENplan for
the evaluation of each plan. The main loop of sumbeam is
listed as follows:

for (iorg=0; iorg<(*plan).norgs; iorg++)
for (ipt=0; ipt<(*plan).organ[iorg].npts; ipt++)

(*plan).organ[iorg].dose[ipt] = 0;
for (iorg=0; iorg<(*plan).norgs; iorg++)
for (ibm=0; ibm<(*test).nbeams; ibm++)

for (ipt=0; ipt<(*plan).organ[iorg].npts; ipt++)
(*plan).organ[iorg].dose[ipt] = (*plan).organ[iorg].dose[ipt] +

(*plan).beam[(*test).index[ibm]].organ[iorg].dose[ipt] *
(*test).weight[ibm] * (*goals).isocenterdose /
(*plan).beam[(*test).index[ibm]].isodose;

The loop features multilevel indirect access todosear-
rays. Of the VRSplan, the most important routine is “scat-
ter point dose”. It was executed for 22572 times with 9.83
seconds each run. Since the total execution time was dom-
inated by these two routines, our major efforts had been on
the parallelization of these routines.

2.2 Optimizing RTTP with Compiler Opti-
mizations

We employed SUN Workshop Compiler C4.2 to optimize
the RTTP code on the SUN 4-way E3000. We tried a com-
bination of flags-fast -native -xO5 -dalign, which was ex-
pected to yield the best result for most sequential programs.
Table 2 gives a profile of the RTTP when it was run under
the corresponding optimization options. The table shows a
speedup of 2.3 times over themainexecution time in Ta-
ble 1. The improvement is mostly due to the kernel loop of
sumbeam. Recall that the sumbeam loop involves many

multilevel indirect data references. The combination of op-
timization options reduces the loop overhead by minimiz-
ing the depth of indirect references.

Table 2: Profiling data due to sequential optimization
Function Name Time (sec) %Time
main 750.44 99.9
sumbeam 255.88 34.10
evaluateplan prob 177.82 23.70
scatterpoint dose 163.96 21.85
evaluateplan dose 64.99 8.66
hpsort 43.66 5.82

Next, we experimented with automatic parallelizing op-
tion -xparallel. It is a macro of a combination of-xautopar
-xdepend -xexplicitparflags. Columns two and three in Ta-
ble 3 shows a profile of the RTTP due to the-xparallelop-
tion, together with the sequential optimization flags. From
the table, we can not see any performance improvement
from using the-xparallel flag. It is because RTTP’s com-
plex data structures and indirect access patterns as shown
in the sumbeam loop are beyond the capability of the op-
tion [12].

Table 3: Profiling data due to parallelization

-xparallel SUIF
Function Name Time(s) %Time Time(s) %Time
main 1298.32 99.9 1313.20 99.9
evaluateplan prob 415.39 32.00 449.70 34.24
scatterpoint dose 197.25 15.19 104.63 7.97
evaluateplan dose 178.90 13.78 227.83 17.35
hpsort 129.65 10.00 168.00 12.79

2.3 Parallel RTTP with Stanford SUIF

As an alternative to SUN’s native compiler, we also exper-
imented with Stanford SUIF [8] compiler to parallelize the
RTTP system. The SUIF translates sequential programs
into shared addressing space parallel codes. The code is
run in a single-program, multiple-data (SPMD) paradigm,
which contains calls to a portable run-time library. A pro-
file of the RTTP generated from SUIF presetned in the right
two columns of Table 3. The table shows SUIF cannot par-
allelize the loops either. Since the RTTP compiled by SUIf
would generate wrong results when sequential optimiza-
tion flags were enabled, the profile was obtained without
using sequential optimization flags.



3 Optimizing RTTP on a Cray J916

3.1 Using Cray C compiler

On a Cray J916, we employed Cray vectorizing and auto-
tasking tools to optimize the RTTP system. Using Crayjob
accounting(ja) andhardware performance monitor(hpm),
we first present base performance (without optimization)
of the RTTP code in the second column of Table 4. The
performance data show that scalar operations dominated
the program execution time. The big difference between
the elapsed time and user CPU time also indicates that
the RTTP involved I/O intensive tasks. Our optimization
efforts had focused I/O processing and CPU computation
managements.

Table 4: Performance on Cray J916 using various opti-
mization techniques

BasePerf I/O Opt CPU Opt
MIPS 28.54 29.54 31.28

Floating ops/CPU second 3.41M 6.54M 13.72M
Vector int&logical ops 0.00M/cpu 0.00 M/cpu 0.04M/cpu

Vector floating point 0.00 M/cpu 0.00M/cpu 0.00M/cpu
Scalar functional unit 4.38M/cpu 4.01M/cpu 19.31M/cpu

Elapsed time 10916.43s 6212.69s 3316.12s
User CPU time 4004.13s 3107.53s 2795.75s

System CPU time 100.94s 197.94s 267.07s

We optimized the I/O performance by removing the un-
necessary I/O operation; combining all the I/O operation
that can be combined; changing some formatted I/O oper-
ations (e.g. scanf, printf) into unformatted I/O operations
(e.g.ffread, ffwrite); eliminating some formatted I/O oper-
ations which are produced by some function for the input
data of other functions by using memory-resident files or
memory-resident predefined file systems. The results from
the above I/O optimizations are presented in the third col-
umn of Table 4. Comparing to the base performance, we
can see that the user CPU time was reduced drastically, al-
though no vectorization was noticed.

The CPU computation performance can be optimized
by several techniques: Scalar optimization improves the
performance of scalar processing; Vector processing uses
pipelining of arithmetic operations; Inlining optimization
moves code from very small subprograms in-lined to the
calling program; Autotasking allows parallel execution on
multiple CPUs. In light of the fact that the RTTP code
contains deep function calls and multi- level indirect data
references, we enhanced the program by changing some
reference values into arrays and optimized the code by us-
ing a combination of flags-scalar3, -inline3, -vecter3. The
resulting performance listed in the third column of Table 4
shows a further improvement over the I/O optimization.

Finally, we used the autotasking tool provided by Cray
to automatically parallelize the code. Unfortunately, we
could not get any speedup from autotasking.

3.2 Optimizing RTTP with Stanford SUIF

As we did on SUN SMP servers, we experimented with
Stanford SUIF for the optimization of the RTTP on the
Cray J916. We first ported SUIF to Cray based on a Pthread
runtime library. We compiled the SUIF code using the-
inline3, -vector3, -scalar3flags of the Cray C compiler.
Table 5 gives the execution results on four processors. A
comparison with Table 4 clearly indicates the superiority
of the Cray vectorization compiler to the SUIF.

Table 5: Performance with SUIF on Cray J916
MIPS 31.28

Floating ops/CPU second 2.01M/s
Vector integer&logical operation 1.06M/s

Vector floating point 0.91M/s
Scalar functional unit 7.30M/s

Elapsed time 4895.92s
CPU #1 3131.47s
CPU #2 1383.53s
CPU #3 356.12s
CPU #4 24.87s

System CPU time 192.71s

4 Parallel RTTP on Distributed En-
vironments

From the optimization experience on Cray J916, we real-
ized that the data input/output part of the RTTP system ac-
counted for a large fraction of execution time. Since the
real clinic application must be a distributed system, we
employed Parallel Virtual Machine (PVM) to perform the
RTTP components on different platforms. We assumed a
SUN SPARCstation-5 workstation (170MHz SuperSPARC
and 32MB memory) to be its front-end. We extracted the
data input/output part out of the RTTP system and kept it
run on the workstation. The other compute-intensive tasks,
such as dose calculation and genetic optimization were run
on a SUN SMP or Cray J916. We refer to the multipro-
cessor machines as RTTP servers. The RTTP has an in-
put of more than 40MB floating point numbers and an out-
put data of about 2KB floating point numbers. Since each
beam dose is characterized by its independent beam name
data, anastruct data, constraints data, skin data, and points
data to calculate its dose, we assigned the input data onto
the workstation and the functions of dose computation and
optimization on a RTTP server before each beam’s dose



calculation was finished. We pipelined the next beam data
from the RTTP server. To tolerate the network latency, we
also take the advantage ofpvm setopt to set up direct task-
to-task links for all subsequent TCP/IP communications.
Each PVM process is maximumly optimized on each ma-
chine. Table 6 summarizes the timings in different con-
figurations. The superiority of the configuration of SUN
workstation and server is partly due to the fact that they are
located within the same local area network.

Table 6: Performance on distributed environments
Configurations Time(Seconds)

SUN workstation and SUN Enterprise 812.23
SUN workstation and Cray J916 4231.71

(through PVM daemons)
SUN workstation and Cray J916 4082.29

(through direct connection)

5 Hand-coding RTTP on clusters

The preceding sections uncovered that neither the vendor
compilers nor research prototypes were able to parallelize
or vectorize the RTTP system. For an illustration of the
potential of its parallelization, this section reports the re-
sults from our manual parallelizations on a cluster of four
SMP servers. One of the servers is a 6-way SUN E4000
with 1.5GB memory and the others are 4-way SUN E3000
with 0.5 GB memory each. Of the E4000 machine, four
processors were used in implementation.
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Figure 4: Message passing implementation of VRSplan

It is noticed that dose calculation for beams in the VR-

Splan subsystem is based on the same anastruct data and
point description data and there are no dependences be-
tween beams. Accordingly, the VRSplan can be executed
concurrently. Figure 4 shows a message passing VRSplan
algorithm. It was implemented in both PVM and MPI li-
braries. Their parallel execution time, together with those
from multithreading on a single SMP, are presented in Fig-
ure 5. From the figure, it can be seen that the multi-
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Figure 5: Speedup for VRSplan due to different program-
ming approaches

threaded RTTP could gain a speedup of 3.21 on a 4-way
SMP. The message-passing versions achieved speedups of
up to 10 over a cluster of 16 processors. The moderate high
speedup, in comparison with the marginal improvements
from parallelizing compilers, demonstrates the weakness
of the automatic parallelization tools.

For the GENplan, since the population of each genera-
tion is based on former generation except the first random
generation, the main loop is essentially sequential and can-
not be parallelized.. However, each function call within the
main loop has many simple uniform loops which can be
executed in parallel. The parallel algorithm of GENplan is
shown in Figure 6. For each iteration, we parallelized the
inner loops within each subroutine via three approaches:
pthread, MPI, and String-based distributed shared memory
(DSM) [5, 6]. The algorithm has a fork-join implemen-
tation and a large number of synchronization points. Fig-
ure 7 shows the speed-up due to different programming ap-
proaches. Again, the achieved moderate speedup, in com-
parison with the marginal improvements from parallelizing
compilers, demonstrates the limitations of the current auto-
matic parallelization tools.

6 Summary of Results

This paper has presented our extensive experience with the
parallelization of a real-world 3-D radiation therapy treat-
ment planning (RTTP) system. The RTTP system is rou-
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tinely used to plan treatments for a majority of patients
at the Gershenson Radiation Oncology Center at Harper
Hospital in Detroit. It is a meta-problem, comprising two
major components: dose calculation and genetic optimiza-
tion. To accelerate the process for real-time planning in
clinic, we integrated the two components and parallelized
the system on a wide range of platforms, including Sun
SMP servers, Cray J916 vector machines, and clusters of
SMPs. We experimented with vendors’ native optimiza-
tion tools and Stanford SUIF parallelizing compilers for
automatic parallelization of the codes. For comparison, we
hand-coded parallel RTTP using multithreading, message-
passing, and distributed shared memory tools. The exper-
imental results showed that none of the automatic paral-
lelization tools were capable of handling the real-world ap-
plication, although plenty of parallelism exists in the codes.
The difficulty is due to RTTP’s dynamic and irregular com-
putational behaviors.
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