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AbstractÐThis paper presents a time stamp algorithm for runtime parallelization of general DOACROSS loops that have indirect

access patterns. The algorithm follows the INSPECTOR/EXECUTOR scheme and exploits parallelism at a fine-grained memory

reference level. It features a parallel inspector and improves upon previous algorithms of the same generality by exploiting parallelism

among consecutive reads of the same memory element. Two variants of the algorithm are considered: One allows partially concurrent

reads (PCR) and the other allows fully concurrent reads (FCR). Analyses of their time complexities derive a necessary

condition with respect to the iteration workload for runtime parallelization. Experimental results for a Gaussian elimination loop,

as well as an extensive set of synthetic loops on a 12-way SMP server, show that the time stamp algorithms outperform iteration-

level parallelization techniques in most test cases and gain speedups over sequential execution for loops that have heavy

iteration workloads. The PCR algorithm performs best because it makes a better trade-off between maximizing the parallelism

and minimizing the analysis overhead. For loops with light or unknown iteration loads, an alternative speculative runtime

parallelization technique is preferred.

Index TermsÐCompiler, parallelizing compiler, runtime support, inspector-executor, doacross loop, dynamic dependence.

æ

1 INTRODUCTION

AUTOMATIC parallelization is a key enabling technique for
parallel computing. Of particular importance is loop

parallelization. Loops are often classified as one of two
types: static or dynamic, with respect to the determinism of
array subscript expressions. A static loop, as shown in
Fig. 1a, is characteristic of statically known coefficients
and deterministic index functions in all subscript expres-
sions. Its loop-carried dependence can be analyzed at
compile time. By contrast, the subscript expressions in
dynamic loops, like Fig. 1b, are nondeterministic due to the
presence of input-dependent indirect access arrays u and v.
Since cross-iteration dependences in dynamic loops are
unknown at compile time, parallelization of such loops has
to be complemented by runtime techniques.

Previous studies on parallelizing compilers were mostly

targeted at static loops. This paper focuses on runtime

parallelization of dynamic loops. Dynamic loops appear

frequently in scientific and engineering applications. For

example, in molecular dynamics [18], a calculation of

nonbounded forces between atoms is a dynamic loop, like

Fig. 2a, because atoms within a certain cutoff are accessed

via the indirect array partners. Another example of

dynamic loops occurs in computational fluid dynamics

(CFD). A CFD simulation on unstructured grids is

essentially a PDE solver on sparse matrices [21]. Under

an edge-oriented compressed data representation of sparse
matrices, the solver is a loop with indirect access to grid
points, as shown in Fig. 2b. Although the statically
unknown cross-iteration dependences of the two example
loops can be broken by techniques like parallel induction,
runtime parallelization techniques are highly demanded for
general dynamic loops. An empirical study by Shen et al. [33]
on array subscript expressions of more than 1,000 scientific
and engineering routines (100,000 code lines) showed that
nearly half of the array references were nonlinear sub-
script functions and that about 15 percent of the nonlinear
one-dimensional array references were due to the pre-
sence of indirect access arrays. Dynamic loops are also
popular in symbolic applications due to the commonplace
of pointer data structures.

Like compile-time analyses for static loops, runtime
parallelization of a dynamic loop is for detecting cross-
iteration dependences and exploiting appropriate degrees
of parallelism for concurrent execution of the loop. Since
the process of dependence detection and parallelism
exploitation incurs nonnegligible runtime overhead, it is
the additional objective of minimizing the overhead that
makes runtime parallelization harder than compile-time
analyses.

There are two major runtime parallelization approaches:
Inspector [9], [22], [30], [32] and speculative execution [14],
[27], [30], [39]. With the Inspector scheme, a loop under
consideration is transformed at compile time into a pair of
inspector and executor routines. At runtime, the inspector
examines loop-carried dependences and the executor per-
forms the actual loop operations in parallel, based on the
dependence information exploited by the inspector. In the
speculative execution scheme, the target loop is first
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handled as a DOALL loop regardless of its inherent degree
of parallelism. If a subsequent dependence test at runtime
finds that the loop is not fully parallel, the whole
computation is then rolled backed and executed sequen-
tially. Speculative execution yields good results when the
loop is in fact executable concurrently. However, it is
unable to deal with DOACROSS loops that contain cross-
iteration dependences. Due to the popularity of DOACROSS

loops, this paper follows the Inspector/Executor scheme
with the objective of designing efficient Inspector algo-
rithms for a good trad-eoff between the degree of
parallelism and the runtime parallelization overhead.

There were studies of the Inspector scheme that focused
on parallel dependence analyses [9], [22], [30], [32],
synchronization optimization on shared memory multi-
processors [7], and communication scheduling on distrib-
uted memory systems [32]. There were also studies on
parallelization techniques for special loops without certain
types of cross-iteration dependences [23], [32]. In this paper,
we propose time stamp Inspector algorithms for general
dynamic loops that contain any type of cross-iteration
dependence. It detects cross-iteration dependences in
parallel and exploits parallelism at a fine-grained memory
reference level. A challenge with parallel Inspector algo-
rithms is the treatment of consecutive reads of a memory
location in different iterations. Consider a loop derived
from the solution of equation UX � B, where U is an upper
triangle matrix. Its iteration space is shown in Fig. 3. While
the loop is static, Gaussian elimination on sparse matrices
often leads to dynamic loops. For a parallel inspector,
parallelism detection between consecutive reads of the
same element (e.g., X[N-1]) is nontrivial by any means
because the reads, subject to the same flow and/or
antidependences, may be handled by different processors.
As far as we know, there are no parallel approaches
that are capable of exploiting parallelism between the
consecutive reads. The time stamp algorithm improves

upon previous parallel approaches of the same generality
by exploiting various degrees of parallelism and, particu-

larly, allowing consecutive reads in different iterations to
proceed concurrently. Two variants of the algorithm are

evaluated: One allows partially concurrent reads (PCR)
and the other allows fully concurrent reads (FCR).

The time stamp algorithms exploit parallelism at a

fine-grained memory reference level. An alternative is

the iteration-level technique. It assumes a loop iteration
as the basic scheduling and execution unit. It decomposes

the iteration space into a sequence of subsets, called
wavefronts. Iterations within the same wavefront can be

run in parallel. Dependences between wavefronts are
enforced by barrier synchronization. The iteration-level

technique reduces the runtime scheduling overhead while
sacrificing some parallelism. Loop parallelization at the

iteration level is a common practice in compile-time
analyses. Static loops that have nonuniform cross-iteration

dependences are often transformed, based on convex hull
theories, into a sequence of DOALL loops [19], [35]. For

dynamic loops, wavefront transform techniques may not
lead to good performance.

We evaluated the runtime techniques for the paralleliza-

tion of a Gaussian elimination loop, as well as a set of
synthetic loops, on a SUN Enterprise Server E4000 with

12 processors. The experimental results show that the time

stamp algorithms work well for loops that contain heavy
workload at each iteration. However, for loops with light

iteration workloads, speculative runtime parallelization
techniques are preferred. Of the time stamp algorithms,

the PCR algorithm yields substantial improvement over
the others because it makes a better trade-off between

maximizing the parallelism and minimizing the analysis
overhead. We also showed that the time stamp algorithms

outperform the iteration-level I approach in most test
cases.

The rest of this paper is organized as follows: Section 2

provides an overview of the technique and a brief review of
related work. Sections 3 and 4 present the time stamp

algorithms that exploit varying amounts of parallelism for
consecutive reads of the same memory element. Section 5

describes implementation details of the algorithms and

detailed analyses of their complexities in space and time.
Section 6 presents the evaluation results. Section 7 concludes
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Fig. 1. Generic loops exhibiting static and dynamic dependencies.

(a) Static loop. (b) Dynamic loop.

Fig. 2. Examples of dynamic loops from engineering applications. (a) A molecular dynamics loop. (b) A computational fluid dynamics loop.
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the presentation with remarks on limitations of the
Inspector/Executor runtime parallelization algorithms.

2 BACKGROUND AND RELATED WORK

Loop parallelization focuses on cross-iteration dependence
analyses and exploitation of parallelism. Since a loop tends
to be run over data arrays, loop-carried dependences can be
characterized by subscript expressions in array references.
Each subscript expression is a function of loop index
variables. For example, two iterations, �i1; j1� and �i2; j2�, of
a double loop, which contain references to the same array
element, are dependent and their dependent distance is
�i2 ÿ i1; j2 ÿ j1�. One of the principal objectives of loop
parallelization is to discover distance vectors to characterize
all cross-iteration dependences. Finding dependences has
proven to be equivalent to the NP-Complete problem of
finding integer solutions to systems of Diophantine
equations. Past studies were mostly targeted at loops with
simple linear subscript expressions; see [3] for a survey of
the early methods for solving linear Diophantine equations
and [2] for related techniques in a general context of
optimizing compilers. For nonlinear subscript expressions,
the compiler employs approximate methods to test data
dependences [4] or simply assumes that the loop statements
are fully dependent on one another.

Note that a subscript expression is not necessarily
deterministic at compile time. Its coefficients, or the
function, may be input-dependent. When the subscript
expressions are nondeterministic, cross-iteration dependent
information has to be exploited at runtime. INSPECTOR/
EXECUTOR is an important runtime parallelization
technique. Its basic idea is to have the compiler generate
an inspector and an executor for a loop to be parallelized
at runtime. The inspector identifies cross-iteration depen-
dences and produces a parallel execution schedule. The
executor uses this schedule to perform the actual opera-
tions of the loop. The Inspector/Executor scheme provides
a runtime parallelization framework and leaves strategies
for dependence analysis and scheduling unspecified. The
scheme can also be restructured to decouple the

scheduling function from the inspector and merge it with
the executor. The scheduling function can even be
extracted to serve as a stand-alone routine between the
inspector and the executor. There are many runtime
parallelization algorithms belonging to the Inspector/
Executor scheme. They differ from each other mainly in
their structures and strategies used in each routine, in
addition to the type of target loops considered.

Pioneering work on using the Inspector/Executor
scheme for runtime parallelization is due to Saltz et al.
[32]. For loops without output dependences (i.e., the
indexing function used in the assignments of the loop body
is an identity function), they proposed an effective iteration-
level Inspector/Executor scheme. Its inspector partitions
the set of iterations into a number of subsets, called
wavefronts, that maintain cross-iteration flow dependences.
Iterations within the same wavefront can be executed
concurrently, but those in different wavefronts must be
processed in order. The executor of the scheme enforces
antidependences during the execution of iterations in the
same wavefront. Saltz et al. applied the technique to loops
like Fig. 2b [18]. The basic scheme was generalized by
Leung and Zahorjan to general loops that contain any
cross-iteration dependences [23]. In their algorithm, the
inspector generates a wavefront-based schedule and
maintains output dependences and antidependences as
well as flow dependences. The executor simply performs
the loop operations according to the wavefronts of
iterations. Fig. 4 shows the inspector and executor
transformed from the loop in Fig. 1b. In the figure, wf �i�
stores the wavefront level of iteration i. lr�i� and lw�i� record
the last wavefront that reads and writes X�i�, respectively.
wf , lr, and lw are initially set to zero.

Note that the inspector in the above scheme is
sequential. It requires time commensurate with that of a
serial loop execution. Parallelization of the inspector loop
was investigated by Saltz et al. [32] and Leung and
Zahorjan [22]. Their techniques are applicable to loops
without anti or output dependences. Rauchwerger et al.
presented a parallel inspector algorithm for a general form
of loops [30]. They extracted the scheduling function and
presented an inspector/scheduler/executor scheme. Both
their inspector and scheduler can be run in parallel.

Iteration-level Inspector/Executor schemes assume a
loop iteration as the basic scheduling unit in the inspector
and the basic synchronization object in the executor. By
contrast, reference-level parallelization techniques exploit
parallelism at a fine-grained memory reference level. They
assume a memory reference as the basic unit of scheduling
and synchronization. Processors running the executor are
assigned iterations in a wrapped manner and each spin
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Fig. 4. An iteration level Inspector/Executor shceme. (a) Inspector. (b) Executor.

Fig. 3. The iteration space of the Gaussian elimination method to solve

UX � B.
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waits as needed for operations that are necessary for its
execution. Zhu and Yew [40] proposed a scheme that
integrates the functions of dependence analysis and
scheduling into a single executor. Midkiff and Padua [25]
improved upon the algorithm by allowing concurrent reads
of the same array element by several iterations. Even
though the integrated scheme allows concurrent analysis
of cross-iteration dependences, tight coupling of the
dependence analysis and the executor incurs high
synchronization overhead in the executor. Recently,
Chen et al. [9] advanced the technique by decoupling the
function of the dependence analysis from the executor.
Separation of the inspector and executor not only reduces
synchronization overhead in the executor, but also provides
the possibility of reusing the dependence information
developed in the inspector across multiple invocations of
the same loop. Their inspector can proceed in parallel. But,
it is unable to exploit parallelism between consecutive reads
of the same array element.

The iteration and reference levels are two competing
techniques for runtime loop parallelization. Reference-level
techniques overlap dependent iterations. They can also
enforce nondeterministic control dependences. Consider
the loop and index arrays shown in Fig. 5. The first two
iterations can be either independent (when exp�0� is false
and exp�1� is true), flow dependent (when exp�0� is true and
exp�1� is false), antidependent (when both exp�0� and
exp�1� are true), or output dependent (when both exp�0�
and exp�1� are false). The nondeterministic cross-iteration
dependences are due to control dependences between
statements in the loop body. Control dependences can be
converted into data dependences by an if-conversion
technique at compile time [1]. The compile-time technique,
however, may not be useful for loop-carried dependence
analyses at runtime. In iteration-level techniques, loops
with conditional cross-iteration dependences must be
handled sequentially. In contrast, reference-level techniques
can handle this class of loops easily. At runtime, the
executor, upon testing a branch condition, may set all
operands in the untaken branch available so as to release
processors waiting for those operands.

An alternative to the Inspector/Executor approach is
the speculative execution scheme. In this scheme, the
target loop is first handled as a parallel loop regardless of
its inherent degree of parallelism. If a subsequent
dependence test at runtime finds that the loop is not
fully parallelizable, the whole computation is then rolled
back and executed sequentially. The idea of speculative
execution is not new. It has long been an important
technique for exploitation of branch-related instruction-
level parallelism [28]. The technique was also deployed in
the design of multithreading architectures [20], [27].
Recently, Rauchwerger et al. applied the idea, together
with dynamic privatization and reduction recognization,
for runtime loop parallelization [31], [39]. The technique
has proven to be effective for DOALL loops and loops that
are convertible to DOALL due to array privatization and
reduction parallelization. The speculative parallelization
relies on runtime dependence testing. A related technique
is the linearization test [13], [15]. It checks whether the

array subscript expressions are linear functions of loop
indices and decides if the loop carries cross-iteration
dependences. Inspector/Executor parallelization techni-
ques complement speculative execution of general dy-
namic DOACROSS loops. Advantages of parallelizing
DOACROSS loops were shown in [6], [7], [12], [17], [24].
Readers are referred to [29] for a recent comprehensive
survey of the Inspector/Executor and speculative runtime
parallelization techniques.

Finally, we note that objectives of loop parallelization are
to exploit parallelism based on cross-iteration dependences,
partition the loop computation and data across processors,
and orchestrate the parallel execution of the loop. Besides
techniques for dependence analysis and parallelism
exploitation, there are strategies that are dedicated to
scheduling DOACROSS loops for data locality, load
balancing, and minimizing synchronization overhead
[8], [16], [38]. Scheduling and synchronization optimiza-
tion techniques complement runtime loop parallelization
algorithms.

3 TIME STAMP ALGORITHM ALLOWING PARTIALLY

CONCURRENT READS

This section presents a parallel reference-level INSPECTOR/
EXECUTOR algorithm (PCR, for short) along the lines of the
work by Chen et al. [9]. We refer to the original algorithm as
CTY. The PCR algorithm allows partially concurrent reads
without incurring extra overhead in the inspector. The next
section presents a new algorithm (FCR, for short) that
allows fully concurrent reads.

Consider the general form of the loops in Fig. 1b. It
defines a two-dimensional iteration-reference space. The
inspector of the algorithm examines the array element
references within a loop and constructs a dependence chain
for each element in the iteration-reference space. We index
dependence chains by the array element references. That is,
dependence chain k represents a chain of references that
accesses the kth array element. Each reference in a
dependence chain is assigned a stamp indicating its earliest
activation time relative to the other references in the chain.
A reference can be activated if and only if the preceding
references are finished. The executor schedules activation of
the references of a chain through a logical clock. At a given
time, only those references whose stamps are equal to or
less than the clock are allowed to proceed. Dependence
chains are associated with clocks ticking at different speeds.

Note that we assume the loop has the same number of
array element references (i.e., loop depth) at each iteration.
We use a vector, rw, to indicate each reference as a read or a
write. For example, the loop in Fig. 1b has an rw vector of
�READ;WRITE�. The proposed algorithms are readily
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Fig. 5. An example of loops with conditional cross-iteration

dependences.
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applicable to loops that contain control dependences. For
example, in Fig. 5, we can set the loop depth to four and set
rw � �READ;WRITE;READ;WRITE�. A corresponding
indirect access array can be constructed at runtime based
on the values of u1, u2, v1, v2, and exp�i�. The proposed
algorithms can also be applied to loops that have different
numbers of references in iterations. For a loop with iteration
space, as in Fig. 3, we normalize the loop by inserting
ªvoidº references into its indirect access array so that
rw � �READ;READ; . . . ;READ;WRITE�.
3.1 Serial Inspector and Parallel Executor

We assume reference stamps are discrete integers. The
stamps are stored in a two-dimensional array stamp. Let
�i; j� indicate the jth reference within the ith iteration.
stamp�i��j� represents the stamp of reference �i; j�. rw�j�
indicates that the jth reference within an iteration is a read
or a write. Stamping rules of the inspector algorithm are
defined as follows:

S0. References at the beginning of dependence chains are
assigned to one.

S1. For a reference �i; j� to array element k, assuming its
immediate predecessor in the dependence chain k is
reference (m;n),

S1.1.
if rw�j� ��WRITE, then stamp�i��j� � s, where s is the
reference order in the chain;
S1.2.
if rw�j� �� READ, then

stamp�i��j� � stamp�m��n� if rw�n� �� READ;
stamp�m��n� � 1 if rw�n� ��WRITE:

�
Assume the indirect arrays in the loop of Fig. 1b are

u � �15; 5; 5; 14; 10; 14; 12; 11; 3; 12; 4; 8; 3; 10; 10; 3�
v � �3; 13; 10; 15; 0; 8; 10; 10; 1; 10; 10; 15; 3; 15; 11; 0�:

Applying the above stamping rules to the target loop, we
obtain the stamped dependence chains labeled by array
elements, as shown in Fig. 6. For example, the references
(2, 0), (4, 1), (6, 0), (7, 0), (9, 0), (10, 0), (13, 1), and (14, 1)
form a dependence chain 10 because they are all associated
with array element 10. Reference (2, 0) heads the chain and,
hence, set stamp�2��0� � 1.

From Fig. 6, it can be seen that the stamp difference
between any two consecutive references in a chain is one,
except for pairs of write-after-read and read-after-read
references. In pairs of read-after-read, both reads have an
equivalent stamp. In pairs of write-after-read, their
difference is always the number of consecutive reads.

In the executor, we define a logical clock for each
dependence chain. Let time�k� represent the current clock
time of chain k. We set up the following clocking rules in the
executor corresponding to the inspector's stamping rules:

C1. Initially, for each dependence chain k, set time�k� � 1.

C2. A reference �i; j� in dependence chain k is activated if
stamp�i��j� � time�k�.

C3. Upon completion of the reference, time�k� � time�k� � 1.

It is easy to show that the above Inspector/Executor
algorithm enforces all dependences and allows concurrent
reads. Look at the dependence chain associated with array
element 10. From the stamps of its references, it is clear that
the four reads (6, 0), (7, 0), (9, 0), and (10, 0) are able to
proceed simultaneously once the write (4, 1) is done. The
write operation (13, 1) cannot be activated until all four
reads are finished.

3.2 Parallel Inspector and Parallel Executor

The above algorithm builds the stamp table sequentially.
Building dependence chains that reflect all types of
dependences is a time-consuming process. It requires an
examination of all references at least once in the loop. A
basic parallel strategy is to partition the entire iteration
space into a number of blocks. Each block, comprised of a
number of consecutive iterations, is assigned to a different
processor. Each processor establishes its local dependence
chains by examining the references in its local block.
Processors then exchange information about their local
dependence chains and connect them into complete chains.

To apply the algorithm to the construction of the stamp
table in parallel, one key issue is to stamp the references in a
dependence chain across blocks so as to enforce all
dependences and simultaneously allow independent
references to be performed in parallel. Since no processors
(except the first) have knowledge about the references in
preceding blocks, they are unable to stamp their local
references in a dependence chain without the assignment
of its head. Suppose there are four processors that
cooperatively build a stamp table, like Fig. 6. Each
processor examines four consecutive iterations. We label
processors participating in the parallelization by their block
indices. For example, consider the references in block 3 to
array element 3. Since processor 3 does not know whether
there are dependent references in blocks 0 through 2 and
what their stamps are, it is unable to stamp local
references (12, 0), (12, 1), and (15, 1).

To allow processors to continue with the examination of
other references in their local blocks in parallel, Chen et al.
[9] proposed a conservative approach for an inspector to
assign a conservative number to the second reference of a
local chain and leave the first to be decided in a subsequent
global analysis. Using this conservative approach,
processor 3 temporarily assigns 24 plus 1 to the reference
(12, 0), assuming all 24 accesses in preceding blocks (from
0 to 2) are in the same dependence chain. This results in
a stamp of 26 in the subsequent reference (12, 1), as
shown in Fig. 7. The negative sign of a stamp indicates
the stamp is temporarily recorded for the calculation of
subsequent references' stamps. Consider a reference �i; j�
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Fig. 6. Sequentially constructed dependence chains labeled by an array

element. The numbers in parentheses are the stamps of the references.
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in block r. Let g�r� denote the total number of references
in blocks 0 through rÿ 1 and h�r� denote the number of
references of the same dependence chain in block r. For
example, in Fig. 7, g�0� � 0, g�1� � 8, g�2� � 16, and
g�3� � 24. For the dependence chain associated with 10
in block 3, h�3� � 2.

Borrowing the idea of the conservative approach, we set
up one more stamping rule that assigns the same stamp to
all references in a local read group. A read group comprises
consecutive reads of the same array element. If all reads in
the group are in block r, the group is local to block r.

S2. For a reference �i; j� in block r, r > 0,

S2.1.
if the reference heads a local dependence chain,
stamp�i��j� � ÿ�g�r� � 1�;
S2.2.
if the head reference is a read, for a subsequent reference
�m;n� in the same read group, stamp�m��n� � stamp�i��j�.
Applying the above stamping rule, together with the rule

for the serial inspector on local dependence chains, we
obtain partially stamped dependence chains as presented in
Fig. 7. There are three partially stamped dependence chains
associated with array elements 3, 10, and 15 in Fig. 7. The
dependence chains of other elements are omitted for clarity.

Using the conservative approach, most of the stamp table
can be constructed in parallel. Upon completion of the local
analysis, processors communicate with each other to
determine the stamps of undecided references in the stamp
table. Processor 2 sets stamp�8��1� to 2 after communicating
with processor 0 (processor 1 marks no reference to the
same location). At the same time, processor 3 communicates
with processor 2, but gets an undecided stamp on the
reference (8, 1) and, hence, assigns another conservative
number, 17 plus 1, to reference (12, 0), assuming all accesses
in blocks 0 and 1 are in the same dependence chain. The
extra one is due to the total number of dependent references
in block 2. Note that the communications from processor 3
to processor 2 and from processor 2 to processor 1 are run in
parallel. Processor 2 cannot provide processor 3 with any
information, except the number of references in the local
block, until the end of the communication with processor 0.

Generally, processors communicate in the global analysis
phase to determine their undecided references using the
following rules: For an undecided reference �i; j� in block r,
assuming its immediate predecessor �m;n�, if it exists, is in
block r0.

G1. If rw�j� ��WRITE,

stamp�i��j� � g�r0� � h�r0� � 1 if stamp�m��n� < 0;
stamp�m��n� � 1 otherwise:

�

G2. If rw�j� �� READ, then

G2.1.
if rw�n� ��WRITE, then

stamp�i��j� � g�r0� � h�r0� � 1 if stamp�m��n� < 0;
stamp�m��n� � 1 otherwise:

�

G2.2.
if rw�n� �� READ, then

stamp�i��j� �
stamp�m��n� if r � r0;
g�r0� � h�r0� � 1 if r 6� r0 and stamp�m��n� < 0;

stamp�m��n� � s if r 6� r0 and stamp�m��n� > 0;

8><>:
where s is the group size of reference �m;n�.
Fig. 8 shows the complete dependence chains associated

with array elements 3, 10, and 15. Because g�1� � 8 and
h�1� � 3, stamp�9��0� is assigned to 12 by rule G2.2 (the
second case).

Accordingly, the third clocking rule of the executor in
Section 3.1 is modified as follows:

C3. Upon the completion of the reference �i; j� of a
dependence chain k in block r,

time�k� � time�k� � 1; if stamp�i��j� � g�r�;
g�r� � 2; otherwise:

�
For example, consider references in the dependence

chain associated with element 10 in Fig. 8. Execution of the
reference (2, 0) increases time�10� by one because g�0� � 0

and, hence, triggers the reference (4, 1). Activation of
reference (4, 1) will set time�10� to 10 because g�1� � 8.
There are two concurrent reads (6, 0) and (7, 0) in block 1
and two concurrent reads (9, 0) and (10, 0) in block 2. One of
the reads in block 2 will set time�10� to 18 because g�2� � 16

and the other increments time�10� to 19. The write (13, 1) is
then triggered. The last is the write (14, 1).

Theorem 3.1. The PCR algorithm, specified by local inspection
rules S1-S2, global inspection rules G1-G2, and clocking rules
C1-C3, exploits parallelism among consecutive reads in the
same block.

Proof. A group of reads which are consecutive in a local
dependence chain are assigned the same stamp accord-
ing to inspection rules S1.2, S2.2, and G2. They will be
activated simultaneously by their immediate predecessor
write following the execution rules from C1 to C3. Since
their immediate successor write is stamped by counting
the total number of references, including reads, as in rule
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G1, the write will not be activated until all predecessor
reads are complete. Conclusively, the PCR algorithm
does allow consecutive reads in a block to be activated
simultaneously. tu

Note that this parallel inspector algorithm only allows
consecutive reads in the same block to be performed in
parallel. Read references in different blocks must be
performed sequentially even though they are consecutive
in the final dependence chains. For example, in the
dependence chain associated with element 10 in Fig. 8, the
reads (9, 0) and (10, 0) are activated after reads (6, 0) and
(7, 0). We are able to assign reads (9, 0) and (10, 0) the
same stamp as reads (6,0) and (7,0), and assign the
reference (13, 1) a stamp of 14. However, this dependence
chain will destroy the antidependences from (6, 0) and
(7, 0) to (14, 0) in the executor if reference (9, 0) or (10, 0)
starts earlier than one of the reads in block 1.

4 TIME STAMP ALGORITHM ALLOWING FULLY

CONCURRENT READS

This section presents the FCR algorithm that allows fully
concurrent reads. The basic idea is to use rational numbers
to represent clock time in the synchronization of references
in a dependence chain. Write operations and read groups
can each be regarded as a macroreference. For a write
reference or the first read in a read group in a dependence
chain, the inspector stamps the reference with the total
number of macroreferences ahead. Other references in a
read group are assigned the same stamp as the first read in
the group. Correspondingly, in the executor, the clock of a
dependence chain is incremented by one time unit on a
write reference and by a fraction of a time unit on a read
operation. The magnitude of an increment on a read
operation is the reciprocal of its read group size.

Fig. 9 presents sequentially stamped dependence chains.
In addition to the stamp, each read reference is also
associated with an extra integer recording its read group
size. Since neither a reference stamp nor read group size
would be larger than N �D, where N is the number of
iterations and D is the number of references in an iteration,
the variable for read group size can be combined with the
variable for stamp in implementations. For simplicity of
presentation, they are declared as two separate integers.
Look at the dependence chain associated with element 10.
The reference (4, 1) simultaneously triggers four subsequent
reads: (6, 0), (7, 0), (9, 0), and (10, 0). Activation of each of
these reads increments the clock time by 1/4. After all of
them are finished, the clock time reaches 4, which in turn
activates the reference (13, 1). Following are the details of
the algorithm.

4.1 Parallel Inspector

As in the PCR algorithm, the inspector first partitions the
iteration space of a target loop into a number of blocks.
Each block is assigned to a different processor. Each
processor first stamps local references except the head
macroreferences at the beginning of the local dependence
chains. References next to head macroreferences are
stamped with conservative numbers using the conservative

approach as in the PCR algorithm. Processors then
communicate with each other to merge consecutive read
groups and stamp undecided macroreferences in the
time table.

The base of the algorithm is a three dimensional stamp
table: stamp. stamp�i��j��0� records the stamp of reference
�i; j� in the iteration-reference space. stamp�i��j��1� stores the
size of a read group to which reference �i; j� belongs. If
reference �i; j� is a write, stamp�i��j��1� is not used. As
mentioned above, the variables for the read group size and
the stamp can be combined to reduce the three-dimensional
table to a two-dimensional array. The local inspector at each
processor passes once through its iteration-reference block,
forms read groups and assigns appropriate stamps onto its
inner references. Inner references refer to those whose
stamps can be determined locally using conservative
approaches. All write operations, except for the heads of
local dependence chains, are inner references.

Read chains are formed as a doubly linked list in the
stamp table. For a read reference �i; j�, we use stamp�i��j��0�
and stamp�i��j��1� to store addresses of its predecessor and
successor, respectively. To save memory space for the
stamp table, we represent each address �i; j� in a single
integer i �D� j, where D is the number of references in an
iteration. To distinguish reference pointers from stamps in
the table, we use negative numbers to represent read group
links. A read group is closed if it is bracketed by two
literals, L-CLOSURE and R-CLOSURE, at two ends. Whenever
a read reference �i; j� is unable to determine the
address of its predecessor or successor, it marks the
address ªuº (undecided) using the minimal integer
(MININT) at stamp�i��j��0� or stamp�i��j��1�. A read group
is open if one or two ends are labeled with address ªu.º

Following are the rules to stamp a reference �i; j� of a
dependence chain in block r. Assume reference �m;n� is its
immediate predecessor, if one exists.

S1. If reference �i; j� leads a local dependence chain, then

stamp�i��j��0� � 1 if r � 0;
u otherwise

�
S2. If rw�j� �� READ and rw�n� ��WRITE, then

stamp�i��j��0� � L-CLOSURE;

S3. If rw�j� �� READ and rw�n� �� READ, then

stamp�m��n��1� � ÿ�i �D� j�
and

stamp�i��j��0� � ÿ�m �D� n�;
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connecting these two reads together;

S4. If rw�j� ��WRITE and rw�n� �� READ, then

stamp�i��j��0� � g�r� � 2

and

stamp�m��n��1� � R-CLOSURE;

If the read group is closed at both ends, then, for each

reference �p; q� in the group, stamp�p��q��0� � x� 1 and

stamp�p��q��1� � y, where x is the stamp of the

predecessor write and y is the read group size; and

S5. If rw�j� ��WRITE and rw�n� ��WRITE, then

stamp�i��j��0� �
g�r� � 2 if stamp�m��n��0� � u;
stamp�m��n��0� � 1 otherwise:

�
Fig. 10 presents a partially stamped dependence chain

associated with elements 10 and 3. From Fig. 10, it can be

seen that block 0 contains a single read group (2, 0), block 1

contains a right-open group (6, 0)(7, 0), and block 2 has a

group (9, 0)(10, 0) that is open at both ends.
The local inspector stamps all inner references of each

block. A subsequent global inspector merges consecutive

read groups that are open to each other. Two consecutive

read groups that open to each other at one end and close at

the other end are merged into a closed read group. Two

consecutive open read groups are merged into a larger open

read group. Fig. 11 is a fully stamped chain evolved from

Fig. 10. Since the read group (6, 0)(7, 0) is open to the group

(9, 0)(10, 0), they are merged into a right-open bigger group.

The global inspector will close the group due to the

presence of write (13, 1).
The global inspector treats read groups as macroreads

and assigns stamps to undecided references in parallel.

Although they require communication with each other to

stamp the undecided references, no reference stamps will

be updated by more than one processor. Specifically, for an

undecided reference �i; j� in block r,

G1. If rw�j� ��WRITE and its immediate predecessor

�m;n� is in block r0, then

stamp�i��j��0� �
stamp�m��n��0� � 1 if rw�n� ��WRITE;

g�r0� � 2 otherwise;

�
G2. If rw�j� �� READ and the read is the last of a read

group, then, for each read �p; q� within the group,

stamp�p��q��1� is assigned to the read group size and

stamp�p��q��0� � g�r0� � h�r0� � 1 if stamp�m��n��0� � u;
stamp�m��n��0� � 1 otherwise;

�
where r0 is the block index of the first read in the group
and �m;n� is the immediate predecessor of the first read.

Note that a right closed read group implies the left end is
closed as well because the processor examines reads in a
group from left to right. When a processor encounters a
right-open read group, it needs to check information from
the following blocks to determine whether this read is the
last in the current read group. For example, in Fig. 11, write
(13, 1) is assigned 18, by rule G1 (case two), because
g�2� � 16. Reads in the group {(6, 0)(7, 0)(9, 0)(10, 0)} are all
assigned 10, by rule G2, because the first read of the group
(6, 0) is located in block 1 and g�1� � 8 and h�1� � 1.

4.2 The Executor

The executor uses a logical clock to synchronize the
memory access operations in a dependence chain. The
clock time can be represented by rational numbers. As in
the PCR algorithm, we index dependence chains by the
indices of data elements. Let time�k� represent the current
clock time of chain k. We set up the following clocking rules
corresponding to the inspector's stamping algorithm:

C1. Initially, time�k� � 1 for each clock k.

C2. Upon the completion of reference �i; j� in block r,

C2.1.
If rw�j� ��WRITE, then

time�k� � time�k� � 1 if stamp�i��j��0� � g�r�;
g�r� � 2 otherwise:

�

C2.2.
If rw�j� �� READ, then

time�k� �
time�k� � 1:0=stamp�i��j��1� if stamp�i��j��0� � g�r�;
g�r� � 1� 1:0=stamp�i��j��1� � f otherwise;

�
where f is the fractional part of time�k�.
Clock time�k� ticks at different rates upon the completion

of different types of references. In the case of a read
reference, the clock is adjusted for the purpose of activating
subsequent writes after all read operations are performed
while preserving all antidepences dependences. For atom-
icity of the adjustment of clocks, mutually exclusive access
to a clock is required. In our implementation, we use a lock
to ensure mutually exclusive references. In order to avoid
busy waiting, we use a condition variable to link all threads
that are waiting for execution. Waiting threads are woken
when the clock is incremented. If the current time reaches
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the earliest time of a reference, the reference enters the
ready state for execution. Otherwise, it goes back to the
waiting state.

For example, look at the dependence chain associated
with array element 10 in Fig. 11. Execution of reference (2, 0)
increments time�10� by one, by rule C2.2 (case one), because
g�1� � 0 and stamp�2��0��1� � 1 (single read group) and,
hence, triggers the execution of reference (4, 0). Upon the
completion of reference (4, 0), time�10� is set to 10 by
rule C2.1 because g�2� � 8 and stamp�4��1��0� � 2. The
subsequent four reads are then triggered. Without loss of
generality, suppose the four references are performed in the
following order: (6, 0), (9, 0), (7, 0) and (10, 0). Activation of
reference (6, 0) increments time�10� by 1/4 by rule C2.2 (case
one) because g�1� � 8 and stamp�6��0��0� � 10. Execution
of reference (9, 0) sets time�10� to 17.5 by rule C2.2
because g�2� � 16. The subsequent two reads increase
time�10� to 18. Upon completion of all the reads, their
subsequent write (13, 1) is activated. The purpose of the real
number clock time is to record the number of activated
reads in a group.

Theorem 4.1. The FCR algorithm, specified by local inspection
rules S1-S5, global inspection rules G1-G2, and clocking
rules C1-C2, exploits parallelism among consecutive reads of
the same memory location.

Proof. A group of reads that are consecutive in a
dependence chain are all assigned to the same stamp
according to rule S3 and the merge operation in the
global analysis. They will be activated simultaneously by
their immediate predecessor write. Since their immediate
successor write is stamped by treating the read group as
a single read, the write will not be activated until all
those reads finish, according to rule C2.2. Conclusively,
the FCR algorithms do allow all consecutive reads to be
activated at the same time. tu

Finally, we note that using rational numbers to represent
clock time is critical to the FCR algorithm. Consider a read
group and its immediate successor write. The write may be
located in a block different from the last read of the group
or in the same block, as illustrated by the dependence chain
of element 10 in Fig. 11. The first case can be handled by
using integer clock time if the write is stamped with the size
of its predecessor read group and each read increments the
clock by one. However, this stamping and scheduling rule
does not work for the second case. Since the write does not
lead a local dependence chain, it should be assigned a
conservative stamp in the local analysis so that its
subsequent references can be stamped. The conservative
stamping rule in Section 3.2 is in no way reflective of the
size of a cross-block read group. Clocking by rational
numbers, in contrast, allows a write to treat its preceding
read group as a single macroreference regardless of their
relative locations.

5 SPACE AND TIME COMPLEXITY

Runtime parallelization incurs nonnegligible runtime
overhead. This section presents our reference implemen-
tations of the time stamp algorithms and detailed analyses
of their complexities in both space and time.

Consider the dynamic loop in Fig. 1b. Assume the
operator F in the loop body takes t0 time. It follows that the
loop sequential execution time TSEQ � Nt0, where N is the
loop size. Parallel complexity of the time stamp
algorithms is dependent on their implementation
details. We assume the algorithms are programmed
in a single-program multiple-data (SPMD) paradigm and
as multithreaded codes. The threads proceed in three
phases: local inspector, global inspector, and executor. The
phases are separated by barrier synchronization. The
barriers can be implemented in a blocking or busy-
waiting scheme [11]. We assume blocking barriers so as to
support a varying number of threads in the inspector and
executor phases on a given set of processors.

For the dynamic loop in Fig. 1b, it is the compile-time
analyzer that generates loop structural information as
inputs to the local inspector. The loop structural informa-
tion includes loop size (i.e., the number of iterations), loop
depth (i.e., the number of array element references of an
iteration), and a vector of D read/write indicators of
references in each iteration, where D is the loop depth.
During the local inspector phase, the threads jointly
construct a global stamp table based on the loop structure
information and an input-dependent indirect access array.
Both the global stamp table and the indirect access array
require O�ND� space.

In the local inspector phase, each thread is assigned a
block of nonoverlapping consecutive iterations to construct
the corresponding block of the stamp table. Our
implementation was based on two auxiliary arrays, head
and tail:

struct {
int index; /* loc. of the 1st ref. in stamp table */
int tag; /* READ/WRITE indicator of the ref. */

} head [N]

struct {
int current; /* stamp of the most recent ref. */
int index; /* loc. of the ref. in stamp table */
int tag; /* READ/WRITE indicator */
int groupsize; /* read grp sz; used only in FCR */

} tail [N]

The head array records the first reference of each local
dependence chain. The tail keeps the immediate predeces-
sor of each reference) and, finally, the last reference of each
local dependence chain. For example, in the construction of
the stamp table of Fig. 10, thread 2 maintains a pair of head
and tail arrays as follows:

head�3� � �17;WRITE�;
tail�3� � �UNDECIDED; 17;WRITE; 0�;

head�10� � �18;READ�;
tail�10� � �UNDECIDED; 19;READ; 2�:

Since the arrays are to be maintained by each thread, the
local inspector needs an extra O�NP � auxiliary space for
P threads. It leads to a space complexity of O�ND�NP �.

Threads in the local inspector work on nonoverlapped
blocks of the stamp table and on their own auxiliary
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head and tail arrays. They are able to run in parallel. In
the local inspector, each thread parses the references in its
local block once. Let t1 denote the cost of parsing a
reference. It takes a constant O�1� time according to the
stamping rules, as defined in the local inspector of the
algorithms.

According to rule S4 of the FCR algorithm in Section 4.1,
each locally closed read group needs an extra parse to
stamp the references according to the group size. The extra
time cost is determined by the distribution of the read
groups and the group sizes. Let � denote the percentage of
references that belong to locally closed read groups.
Assume such groups are uniformly distributed across
the loop iteration space. Then, the time complexity of the
FCR local analysis is

TFCRLA � �1� ��NDt1
P

: �1�

In the global analysis phase, the threads determine the
undecided stamps through communicating their read-only
head and tail arrays. That is, thread i reads the tail data of
thread �iÿ 1� and the head data of thread �i� 1�. Although
threads of the FCR global inspector may need to stamp
references in nonlocal blocks, they can still be run in parallel
without synchronization. This is because no table
elements are to be updated by more than one thread.
Time complexity of the global analysis includes two
parts: 1) the cost of merging consecutive read groups
which are open to each other and 2) the cost of stamping
undecided references in the merged read groups. The cost
of stamping an undecided reference is equivalent to
t1 � O�1�. Merging open read groups is based on the
auxiliary arrays head and tail. Its cost is determined by the
distribution of open read groups and the number of
references in the groups. Let � denote the percentage of
the references that belong to open read groups. Assume the
open read groups are uniformly distributed across iteration
spaces. We obtain the time complexity of the FCR global
analysis as

TFCRGA � �NDt1
P

: �2�

In the phase of executor, the loop iterations can be
assigned to threads in either static or dynamic ways. The
threads are synchronized based on mutex locks and
condition variables associated with array elements. To
exploit fine-grained reference level parallelism, each array
element is associated with a pair of mutex lock and
condition variables. To access an element, a thread first
acquires a corresponding mutex lock. After obtaining the
lock, it checks with the corresponding logical clock to see
if the reference is ready for execution. After accessing the
element, the thread updates the clock time and broadcasts
the new time to threads that are blocked on this element.
If multiple threads are then blocked on the element, they
will compete again for the mutual exclusion lock after
their releases.

During this phase, the time stamp algorithms require
O�N� space for synchronization variables and O�N� space
for logical clocks in addition to the O�ND� space for the

global stamp table. Since the auxiliary arrays head and tail
are no longer needed in this phase, the space complexity of
the algorithms in this phase is reduced to O�ND�.

The threads execute the target loop in parallel based on
the dependence information contained in the stamp table.
Let 
 denote the parallel efficiency of the executor and t2
represent the average cost for synchronized access to an
array element. Then, the time complexity of the executor
becomes

TEX � N�Dt2 � t0�

P

: �3�

Ignoring the cost for barrier synchronization, we add TLA,
TGA, and TEX together and obtain the time complexity of the
FCR algorithm as

T � �1� �� ��NDt1
P

�N�Dt2 � t0�

P

: �4�

Recall that � and � represent the percentages of
references in locally closed and open-read groups, respec-
tively, and that 
 represents parallel efficiency of loop
execution. Evidently, 
 is determined by � and �. The
FCR algorithm aims to maximize 
 at a cost of one more
parsing of ��� �� percentage references in the loop
iteration space. At the other extreme, the CTY algorithm
excludes parallelism between consecutive reads in
execution by setting � � 0 and � � 0. The PCR algorithm
exploits parallelism between references in locally closed
read groups without incurring extra overhead, according to
rule S2 in Section 3.2. However, references in open read
groups, such as (9, 0)(10, 0) in Fig. 7, need an additional
parse for stamping in the phase of global analysis. Hence,
the time complexity of the PCR algorithm is of T with � � 0.

In comparison with TSEQ, we obtain a necessary
condition for performance improvements due to runtime
parallelization:

t0 � ��1� �� ��
t1 � t2�D

P ÿ 1

: �5�

This inequality reveals that runtime parallelization
algorithms will not yield speedup at all for loops that have
very light computational requirements in each iteration,
even in the ideal case of 
 � 100 percent. We refer to the
computational requirements t0 in each iteration as
iteration workload.

We note that the above time complexity analysis assumes
read groups are uniformly distributed in the iteration space.
A nonuniform distribution would lead to a severe load
imbalance between threads and a higher cost for the
global inspector.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
reference-level parallelization algorithms. For comparison,
we include the results from an iteration-level algorithm
due to Rauchwerger et al. (RAP, for short) [30]. The
algorithm breaks down parallelization functions into three
routines: inspector, scheduler, and executor. The inspector
examines the memory references in a loop and constructs
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a reference-level dependence chain for each data element
accessed in the loop. The scheduler then derives more
restrictive iteration-level dependence relations from the
reference-level dependence chains. Finally, the executor
restructures the loop into a sequence of wavefronts,
separated by barrier synchronizations. Iterations in the
same wavefront are executed in parallel while iterations
in different wavefronts are executed in order.

We applied both the reference-level and iteration-level
parallelization algorithms to a Gaussian elimination loop
and a set of synthetic loops on a Sun 12-way SMP server
E4500. The machine is configured with 12 250MHz
UltraSPARC processors and 1.5 GB of memory. Each
processor module has an external 1 MB cache.

Performance of a runtime parallelization algorithm is
dependent on a number of factors. Of foremost importance
is iteration workload. Since any Inspector/Executor algo-
rithm needs to parse array references at least once for the
exploitation of cross-iteration dependences and each re-
ference is rendered by a sequence of synchronization
operations, (5) shows that time stamp algorithms would
not yield speedup for loops that have very light computa-
tional requirements in each iteration. A number of other key
factors include loop structure, array reference pattern, and
loop distribution strategy. In the following, we examine the
impact of the factors on the performance of the paralleliza-
tion algorithms.

6.1 Impact of Iteration Workload

First, we consider a code fragment, as shown in Fig. 12a. It
is derived from a Gaussian elimination solver with pivoting
over sparse matrices. The matrix is first decomposed into a
product of lower triangle matrix L and upper triangle
matrix U . The code fragment shows the subsequent
reduction process of solving equation UX � B. Due to its
sparsity, the upper triangle matrix U is represented in an
Ellpack-Itpack compact format [21]. Since the format
contains only nonzero elements, an indirect matrix colPtr
is used to store the column indices of corresponding
elements in matrix U . To examine the impact of iteration
workload, a delay function is inserted into the loop body.
Since vector B in the equation is often input-dependent and
needs to be calculated at runtime, the loop delay partially
reflects the computational requirements for the vector.

Notice that, unlike the loop model in Fig. 1b, the loop in
Fig. 12a has a different number of references to array X at
each iteration and the loop proceeds with a decreasing

index i. To parallelize the loop using the proposed
techniques, we first normalize it by reversing the index
change and by inserting ªvoidº references to the loop, as we
illustrated in Section 3.1. The indirect access array colPtr is
updated accordingly to reflect the validity of the references.
Fig. 12b presents the normalized loop.

We tested the parallelization algorithms on two
representative sparse matrices: ARC130 and OLM500,
from the Harwell-Boeing collection [26]. ARC130 is a
130� 130 matrix with 304 nonzero entries derived by
laser modeling. Its nonzero entries are distributed
across the whole graph (average nonzero elements per
column is 8 and standard deviation is 18). OLM500 is a
500� 500 matrix with 1,996 entries from the Olmstead
model for the flow of a layer of viscoelastic fluid
headed from below. Its nonzero elements are located in
a narrow band around the diagonal (average nonzeros
per column is 4 and standard deviation is 0.089).

Fig. 13 plots the execution time of the code fragment with
various iteration loads ranging from 0 to 600 microseconds.
Due to the presence of cross-iteration dependences, any
speculative parallelization technique would execute the
loop in serial. Therefore, the sequential execution time
(SEQ) represents a lower bound for speculative algorithms.
Fig. 13a shows that the iteration-level parallelization
technique (RAP) lags far behind the reference-level
parallelization algorithms. This is because the loop is
mostly sequential across iterations due to the loop-carried
flow dependence. The RAP algorithm establishes a
parallel execution schedule with 76 wavefront levels out
of 130 iterations. In terms of the average degree of
parallelism of each wavefront, the 12-way multiprocessor
system was severely underutilized. Fig. 13a also shows
that the total execution time, due to the iteration-level
parallelization algorithm, is insensitive to the iteration
workload. This is because the barrier synchronization
overhead in the executor stage dominates the time.

In the case of OLM500, the iteration-level algorithm
performs even worse. Its execution time is in the range of
1,050 to 1,090 milliseconds, which is too large to be
presented in Fig. 13b together with the results from the
reference-level algorithms. Due to the structure of the
OLM matrix, no iteration-level parallelism has been
found. That is, the RAP algorithm produces a schedule
with 500 wavefront levels out of 500 iterations (i.e.,
sequential execution). The overhead in dependence
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analysis, scheduling, and barrier synchronization lead to a
significant execution time.

In comparison with sequential execution, both figures
clearly indicate that such dynamic loops hardly benefit
from reference-level parallelization techniques if there is no
extra iteration workload associated with array element
references. However, these benefits become significant as
the iteration load increases. Recall that the cost of time
stamp algorithms for the local and global analyses is
independent of the workload. The larger the iteration
workload is, the smaller the execution time percentage for
the analyses. Large iteration workloads can also amortize
the synchronization overhead in the executor. This is the
reason for the execution time for all reference-level
algorithms to rise only slightly as the iteration load
increases.

Of the reference-level algorithms, Fig. 13a shows
that PCR outperforms CTY by 20 to 25 percent in the
case of ARC130. This is because the loop instance
contains 2,984 references, out of which 2,804 are formed
into 283 local read groups. The average group size is 9.9,
which represents a significant parallelism source for a
12-way multiprocessor system. The figure also shows that
benefits obtained from more parallelism among consecu-
tive reads, as exploited by the FCR algorithm, are
outweighed by its extra overhead. The FCR algorithm
establishes a total of 86 read groups across different
iteration blocks of the threads. It increases the average
read group size from 9.9 to 32.67. The overexposed
parallelism might be another source of the performance
loss.

In the case of OLM500, Fig. 13b shows that all the
reference-level algorithms achieve nearly the same
performance. With the input of OLM500, the loop instance
contains 1,802 element references. The PCR algorithm
forms 492 read groups out of 1,222 reads with an average
group size of 2.48. In comparison with the CTY algorithm,
benefits from the extra parallelism among small read
groups are just outweighed by the PCR overhead. The
FCR algorithm establishes a total of 552 read groups with
an average group size of 2.35. Although it does not

increase the read group size, FCR exploits 10 percent more

read groups, which are across blocks. Note that we count

two or more consecutive reads as a read group. FCR

generates more read groups. This is because some read

groups across blocks are due to multiple single reads in

different blocks.
To better understand the relative performance of the

parallelization algorithms, we break down their execution

into a number of principal tasks and present their

percentages of overall execution time in Fig. 14. From the

figure, it can be seen that the RAP algorithm spends

approximately 10 percent of the execution time in the

construction of a wavefront-based schedule. The percentage

remains unchanged as the iteration workload increases.

This is because the total execution time is dominated by the

barrier synchronization overhead in the executor. Recall

that the PCR algorithm performs nearly the same work as

CTY in the local analysis. However, Fig. 14a shows that the

PCR algorithm spends a greater percentage of time in its

local dependence analysis. This implies a reduction of the

time in the executor phase due to the concurrency between

consecutive reads. Fig. 14b shows the cost for dependence

analysis as a percentage drops and the loop size increases.

This is reflected in the increasing speedup over sequential

execution, as shown in Fig. 13.
In summary, the experimental results show that both

reference-level and iteration-level parallelization techniques

benefit from dynamic loops whose iteration workload is

heavy enough to amortize the runtime overhead. Although

the results on a single application are not enough to reach

any conclusion about their relative performances, they

imply that the iteration-level algorithms critically depend

on the cost of the barrier and are more sensitive to the

degree of parallelism available in the loops. Of the

reference-level algorithms, the PCR algorithm delivers the

best results because it makes a better trade-off between

maximizing the parallelism and minimizing the analysis

overhead. The subsequent experiments on synthetic loops

will verify these observations.
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Fig. 13. Execution time of various parallelization algorithms over the loop of Fig. 12b with different delays. (a) ARC130. (b) OLM500.
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6.2 Impact of Loop Structures and Array Reference
Patterns

To examine the effect of loop structures and access patterns,
we consider two kinds of synthetic loop structures:
Single-Read-Single-Write (SRSW) and Multiple-Reads-
Single-Write (MRSW), as shown in Fig. 15. The SRSW
loop is comprised of a sequence of interleaved element
reads and writes in the loop body. Each iteration executes a

delay() function to reflect the iteration workload. In the
MRSW loop, a write follows a sequence of reads. Such
loop models were assumed by other researchers as well
[9], [23], [30].

Array reference patterns are defined by the index array
u�i��j�. Two reference patterns are considered: uniform and
nonuniform access patterns. A uniform access pattern
(UNIFORM, for short) assumes all array elements have
the same probability of being accessed by an element
reference. A nonuniform access pattern (NUNIFORM, for
short) refers to the pattern where 90 percent of the
references are to 10 percent of array elements. Nonuniform
access patterns reflect hot spots in array accesses and result

in long dependence chains.
The experiments measure the overall runtime execu-

tion time for a given loop and an array access pattern.
Each data point obtained in the experiments is the
average of five runs, using different seeds for the

generation of pseudorandom numbers. Since a seed
determines a pseudorandom sequence, algorithms are
able to be evaluated under the same test instances.

Fig. 16 plots the parallel execution time of the loops with
N ranges from 128 to 8,192, assuming the loop depth D � 4
and 100 microseconds of iteration workload. Loops in
the RAP scheduler and the executor of the reference-
level algorithms are decomposed in a cyclic way. The
RAP executor is decomposed in a block way. Generally, a
loop iteration space can be assigned to threads statically
or dynamically [37], [36]. In [36], we experimented with
three simple static assignment strategies: cyclic, block, and
block-cyclic and showed that the reference level algorithms
preferred cyclic or small block cyclic distributions because
such distribution strategies lead to good load balance
among processors.

Overall, Fig. 16 shows that both reference-level and
iteration-level parallelization algorithms are capable of
accelerating the execution of large loops in all test
cases. Since the total workload of a loop increases with
the loop size, runtime parallelization makes more sense
as the loop size increases. This is in agreement with our
observations from the preceding experiments.

Fig. 16 reveals the superiority of the reference-level
algorithms to the iteration-level algorithm. Their relative
performance gaps are extremely wide, particularly in the
case of small loops or loops with nonuniform access
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Fig. 15. Single-Read-Single-Write (SRSW) versus Multiple-Reads-Single-Write (MRSW) loop structures. (a) SRSW loop structure. (b) MRSW loop

structure.

Fig. 14. Breakdown of the execution time by percentage. (a) ARC130. (b) OLM500.
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patterns. Recall that the objective of loop parallelization is
to expose enough parallelism to saturate available
processors and meanwhile avoid over-exposure of paral-
lelism. Since small loops or loops with nonuniform access
patterns tend to have a limited amount of iteration-level
parallelism, reference-level fine-grained parallelization
techniques help increase the utilization of the available
processors. For the same reasons, the reference-level
algorithms achieve a higher speedup for small loops with
uniform access patterns than those having nonuniform
access patterns. The impact of access patterns decreases
with loop size because the reference-level parallelism
becomes excessive as the loop size increases. For example,
the PCR algorithm achieves 1.92 times the speedup over
sequential execution for a loop of uniform SRSW and of
size 256. For a loop of the same type and of size 8,192, the
algorithm obtains 3.86 times the speedup.

Of the reference-level algorithms, the PCR algorithm
outperforms CTY for loops having high cross-iteration
dependences, as shown in Fig. 16b and 16c, because of the
extra parallelism between consecutive reads. Since the
FCR algorithm needs to distinguish between read, write,
and group consecutive reads of the same array element in

the local and global inspector, benefits from exploiting
extra parallelism for some loops are outweighed by the
analysis overhead. In contrast, the PCR algorithm can
obtain almost the same performance as CTY, even for
loops with uniform access patterns, because it incurs only
slightly more overhead in its local inspector.

From Fig. 16, it can also be seen that the reference-level
algorithms are insensitive to loop structures (SRSW versus
MRSW). It is because the algorithms treat read and write
references equivalently in the executor. Each reference is
rendered by a sequence of point-to-point synchronization
operations.

By contrast, Fig. 16 depicts the large impact of array
access patterns on the performance of the iteration-level
algorithm. The figure also shows some effect of loop
structure on the algorithm. To help explain the impact,
we plot the average degrees of iteration-level parallelism
inherent in different loops in Fig. 17. The degree of
parallelism refers to the number of iterations in a
wavefront. From the figure, it can be seen that the degree
of parallelism of a loop is linearly proportional to its size.
MRSW loops, with uniform and nonuniform access
patterns, exhibit no more than 12 degrees of parallelism
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Fig. 16. Execution time of parallelization algorithms, where D � 4 and iteration load = 100�s. (a) SRSW and Uniform. (b) SRSW and Nonuniform.

(c) MRSW and Uniform. (d) MRSW and Nonuniform.
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until their size reaches beyond 256 and 2,048, respec-
tively. This implies that the iteration-level algorithm for
loops smaller than 256 or 2,048 would not gain any
improvement when it is run on a 12-way multiprocessor
system. This is in agreement with the execution time
curves of the algorithm in Fig. 16c and 16d. Similar
observations can be made for the SRSW loops.

Fig. 17 shows that, in comparison with the SRSW loop,
the MRSW loop structure leads to an increase in the degree
of parallelism by approximately 50 percent. This is
equivalent to a reduction of the wavefront depth (i.e., the
maximum wavefront level) of the schedule by half. Since
the cost of a barrier is determined by the number of
processors and is independent of the parallelism degree of a
wavefront, the extra reads in the MRSW loop would cut half
of the barrier overhead in the executor. This explains the
RAP performance difference between Fig. 16b and 16d in
the case of a nonuniform access pattern and between
Fig. 16a and 16c in the case of a uniform access pattern. For
loops with uniform access patterns, the benefits from the
extra reads in the MRSW loop seem amortized by the over-
exposed parallelism. Fig. 16 also shows big performance
gaps between the RAP plots due to various array access
patterns. This is because a uniform access pattern, in
comparison with the nonuniform access pattern, increases
the parallelism degree of RAP wavefronts by more than 6
times, as shown in Fig. 17.

To further illustrate the impact of the loop structure and
the array reference pattern, we present the breakdown of
the execution time of the algorithms in percentages in
Fig. 18. First of all, the figure shows that the RAP
algorithm spends a high percentage of time in the
generation of wavefront-based schedules from reference-
level dependence information. The percentage increases
with the loop size in the case of a nonuniform access
pattern, while the percentage rises and then drops in the
case of a uniform access pattern. Let TWF and TBAR denote
the average execution time of a wavefront and the barrier
cost, respectively. It follows that the execution time of the
RAP executor is

TEX � n�TWF � TBAR�;

where n is the wavefront depth of the RAP schedule. In
the case of loops with a nonuniform access pattern,
TWF << TBAR because of the small average degree of
parallelism. From Fig. 17, it is known that the average
parallelism degree is linearly proportional to the loop
size. That is, TWF increases with the loop size while the
wavefront depth n remains nearly unchanged. This leads
to a slow change of TEX. Since the overhead of the
scheduler is proportional to the loop size, its relative
overhead is increased accordingly. In the case of large
loops with a uniform access pattern, TWF >> TBAR
because of the large parallelism degree of a wavefront.
Since TWF increases with the loop size, so does the
execution time TEX . This is why the percentage of
scheduler overhead drops in this case.

Of the reference-level algorithms, their global analyses
incur most of the overhead. The overhead decreases as the
loop size increases and, hence, leads to larger speedups for
large loops. In applications like computational fluid
dynamics and molecular dynamics, it is common that a
dynamic loop, as shown in Fig. 2, is to be executed
repeatedly and the dependence information exploited in
the inspector is able to be reused across many loop
executions. In these cases, the PCR and FCR are expected
to achieve better performances.

7 CONCLUDING REMARKS

In this paper, we have presented a time stamp algorithm for
runtime parallelization of DOACROSS loops that have
indirect access patterns. The algorithm follows the
Inpector/Executor scheme and exploits parallelism at a
fine-grained memory reference level. It features a parallel
exploitation of parallelism, particularly the parallelism
between consecutive reads of the same memory locations.
Two variants of the algorithm have been evaluated: One
allows partially concurrent reads (PCR) and the other
allows fully concurrent reads (FCR).

We have analyzed their complexities and shown that

performance of the time stamp algorithms is critically

dependent on the loop iteration workload. Since the

algorithms cause nonnegligible overhead, parallelization is

only beneficial to loops that have fairly large workloads.

Experimental results for a Gaussian elimination loop and an

extensive set of synthetic loops on a 12-way SMP have

verified the above claim for any Inpector/Executor algo-

rithm, including coarse-grained iteration-level paralleliza-

tion algorithms. For loops with light iteration workload, an

alternative speculative runtime parallelization technique is

preferred.
Of the time stamp algorithms, we have shown that the

PCR makes a better trade-off between maximizing the
parallelism and minimizing the analysis overhead. The FCR
algorithm is expected to be best suited for loops that are to
be executed repeatedly. We have also shown that the time
stamp algorithms outperform the iteration-level algorithm
in most test cases because the latter is critically dependent
upon the barrier cost and sensitive to loop structures and
array access patterns.
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Fig. 17. Average degree of parallelism exploited by the iteration level

algorithm.
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We note that the time stamp algorithms are targeted at

DOACROSS loops with any type of cross-iteration

dependences. They have been compared with previous

algorithms of the same generality. We have examined

many benchmarks in public domains and found most of

the loops are in special forms (e.g., without output

dependences). Since loops of special forms can be

parallelized efficiently by other techniques, as we re-

viewed in Section 2, the time stamp algorithms have not

been experimented with over such loops. While the

algorithms for arbitrary loop models have limited

applications in today's benchmarks, we argue that the

commonplace of the special loops is partly because all

benchmarks are efficiently coded by well-trained pro-

grammers. However, it may not be the case in real world

applications.

We also note that runtime parallelization incurs non-

negligible overhead. The overhead cannot be amortized in

execution without enough iteration workload. A major

source of the runtime overhead, with the time stamp

algorithms, is barrier synchronization and synchronized

memory references between threads. Both barrier and

synchronized access were implemented in a blocking

scheme. We expect lightweight busy-waiting implementa-

tions would reduce the runtime overhead and, conse-

quently, relax the requirement for runtime parallelization to

some extent. Support for thread level parallelism is gaining

momentum [5], [10], [34]. With architectural support for

multithreading and fast synchronization primitives, refer-

ence-level runtime parallelization techniques, including the

time stamp algorithms, are expected to be more efficient for

dynamic loops.
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Fig. 18. Breakdown of exectution time by percentage on different stages. (a) SRSW and Uniform. (b) SRSW and Nonuniform. (c) MRSW and

Uniform. (d) MRSW and Nonuniform.
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